Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19
1) Рассмотрим треугольник ЕВС - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°. Тогда, ∠ЕВС = 90°-60° = 30°. Против угла в 30 градусов лежит катет, равный половине гипотенузе. ЕВ = 7*2 = 14.
2) Рассмотрим треугольник АВЕ. ∠АЕВ = 180°-60° = 120° (так как он смежный с углом ВЕС). ∠ АВЕ = 180°-120°-30° = 30°. Итак, углы АВЕ и ВАЕ треугольника АВЕ равны, следовательно, он равнобедренный.
3) AE = EB = 14 (это боковые стороны, так как лежат напротив равных углов в одном треугольнике.)
ответ: 14.
Поделитесь своими знаниями, ответьте на вопрос: