Особенность правильного шестиугольника — равенство его стороны и радиуса описанной окружности ({\displaystyle R=t}R=t), поскольку {\displaystyle 2\sin {\frac {\pi }{6}}=1}2\sin {\frac {\pi }{6}}=1.
Все углы равны 120°.
Радиус вписанной окружности равен:
{\displaystyle r={\frac {\sqrt {3}}{2}}R={\frac {\sqrt {3}}{2}}t}r={\frac {{\sqrt 3}}{2}}R={\frac {{\sqrt 3}}{2}}t
Периметр правильного шестиугольника равен:
{\displaystyle P=6R=4{\sqrt {3}}r}P=6R=4{\sqrt 3}r
Площадь правильного шестиугольника рассчитывается по формулам:
{\displaystyle S={\frac {3{\sqrt {3}}}{2}}R^{2}={\frac {3{\sqrt {3}}}{2}}t^{2}}S={\frac {3{\sqrt 3}}{2}}R^{2}={\frac {3{\sqrt 3}}{2}}t^{2}
{\displaystyle S=2{\sqrt {3}}r^{2}}S=2{\sqrt 3}r^{2}
Шестиугольники замощают плоскость (то есть могут заполнять плоскость без пробелов и наложений).
Правильный шестиугольник со стороной {\displaystyle {\frac {1}{\sqrt {3}}}}{\frac {1}{{\sqrt 3}}} является универсальной покрышкой, то есть всякое множество диаметра 1 можно покрыть правильным шестиугольником со стороной
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника относятся как 4: 5: 6, а периметр прямоугольника образованного его средними линиями равен 30 см. найдите средние линии треугольника.
Для равенства двух треугольников достаточно, чтобы три элемента одного треугольника были равны соответствующим элементам другого треугольника, при этом непременно в число этих элементов должна входить хотя бы одна сторона.
Так как все прямые углы равны между собой, то прямоугольные треугольники уже имеют по одному равному элементу, именно по одному прямому углу.
Объяснение:
Отсюда следует, что прямоугольные треугольники равны:
если катеты одного треугольника соответственно равны катетам другого треугольника.
если катет и прилежащий острый угол одного угольника соответственно равны катету и прилежащему острому углу другого треугольника.