Объяснение:
1. Найдите площадь треугольника, стороны которого равны 3 см, 7
см и 8 см.
По формуле Герона S=√р(р-а)(р-в)(р-с).
Найдем полупериметр р=(3+7+8):2=9
р-а=9-3=6
р-в=9-7=2
р-с=9-8=1
S=√(9*6*2*1)=6√3.
3. Основа равнобедренного треугольника равна 70 см, а боковая
сторона – 37 см. Найдите радиус круга, описанного вокруг
треугольника.
Центр -лежит вточке пересечения серединных перпендикуляров.
R=(авс)/(4S)
S=1/2*АС*ВН, ВН-высота к основанию АС.
Высота в равнобедренном треугольнике является медианой АН=35см.
ΔАВН-прямоугольный . По т. Пифагора ВН=√(37²-35²)=√(1369-1225)=√144=12(см)
S=1/2*70*12=420 (см²).
R=(авс)/(4S), R=(70*37*37)/(4*420)=1369/24=57 1/24 (см)
(x+5)^2+(y-3)^2=49
или
(x+5)^2+(y-3)^2=7^2
1) дана окружность смещена на 5 единиц влево по оси ox и на 3 единицы вверх по оси oy, то есть ее центр находится во второй четверти
2) радиус данной окружности равен 7, а диаметр 2*7=14
3)
уравнение прямой, проходящей через данную точку с заданным нормальным вектором имеет вид
a(x-x0)+b(y-y0)=0
прямая ac проходит через точку a(0; sqrt(7), то есть x0=0 и y0=sqrt(7)
за нормальный вектор прямой ac возьмем вектор ba=(2; sqrt( то есть a=2 и b=sqrt(7). следовательно наше уравнение примет вид
2(x-0)+sqrt(7)(y-sqrt(7))=0
2x+sqrt(7)*y-7=0
данная прямая проходит через точки a и c
при y=0 2x-7=0 => x=3,5 - абсцисса точки с
Поделитесь своими знаниями, ответьте на вопрос:
№1. стороны параллеограмма 1) 6 см и 4 см . опредилите периметр параллеограмма. №2 . один угол параллеограмма равен 42 (градусом вычислите величины остальных углов .