∠n=2∠m ∠m+∠n=180°⇒ ∠m+2·∠m=180° ⇒3·∠m=180° ∠m=60° ∠n=30° ∠nmk=30° ∠kmp=30° так как мк- биссектриса угла м ∠nkm=∠kmp=30° - внутренние накрест лежащие при параллельных nk и mp и секущей мк треугольник mnk - равнобедренный nm=nk=kp=8 см проводим высоты nf и ke на сторону мр из прямоугольного треугольника mnf: ∠ m =60° ∠mnf=30° mf=4 см ( катет против угла в 30° равен половине гипотенузы) по теореме пифагора nf²=mn²-fm²=8²-4²=64-18=48 nf=4√3 см h ( трапеции)=4√3 см nf=ep=4 см mp=mf+fe+ep=4+8+4=16 см s( трапеции)=(nk+mp)·h/2=(8+16)·4√3/2=48√3 кв. см me=mf+fe=4+8=12 me: ep=12: 4=3: 1
Aleksei Aleksandrovna649
25.09.2022
Построим правильную треугольную призму авса1в1с1. проведем диагональ боковой поверхности ав1 ребро (высота) данной призмы вв1=√(ав1^2-ab^2)= √(10^2-6^2)= √(100-36)= √64=8 см. площадь боковой поверхности призмы равна s(б)=p*h (где p – периметр основания призмы, h – высота призмы) так как призма правильная то: p=3a (где а – сторона треугольника) р=3*6=18 см s(б)=18*8=144 кв. см. полная площадь призмы равна s=s(б)+2s(ос) (где s(ос) – площадь основания). площадь правильного треугольника (площадь основания) находим по формуле s= (√3*a^2)/4 s= (√3*6^2)/4=(√3*36)/4=9√3 см s =144+2*9√3=144+18√3 см можно так: s =144+2*15.59= (приблизительно) 175.18 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Длина хорды окружности равна 96 а расстояние от центра окружности до этой хорды равно 20 найдите диаметр окружности