ccc712835
?>

Найдите высоту конуса если известно что радиус основания равен 4 см а объём 48 п см^3

Геометрия

Ответы

kuharhuks
Sосн=пr^2      v=s*h      h=v/s      h=п*48/п*16=3см
lubavarif83

Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.

Находим координаты точка А как точки пересечения сторон.

2x-y+5=0 |x(-2)   -4x+2y-10=0

x-2y+4=0               x-2y+4=0    

                           -3x    - 6 = 0,

                               x(A) = -6/3 = -2,

                               y(A) = 2x - 5 = 2*(-2) + 5 = 1.

Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).

х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,

у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.

Через точку С проводим прямую, параллельную АД.

Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.

Угловой коэффициент параллельной прямой сохраняется.

у(ВС) = (1/2)х + в. Подставим координаты точки С.

7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.

Уравнение ВС: у = (1/2)х + 5.

Находим координаты точки В кк точки пересечения АВ и ВС.

2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.

Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.

Находим длины сторон.

AB (c) = √((xB-xA)² + (yB-yA)²) =   20 4,472135955

BC (a) = √((xC-xB)² + (yC-yB)²) =   20 4,472135955

CD = √((xD-xC)² + (yD-yC)²) =   20 4,472135955

AD = √((xC-xA)² + (yC-yA)²) =   20 4,472135955 .

Находим длины диагоналей.

AC  = √((xC-xA)² + (yC-yA)²) =   72 8,485281374

BD = √((xD-xB)² + (yD-yB)²) =   8 2,828427125 .

Как видим, это ромб.

Его площадь S = (1/2)*AC*BD = (1/2)*V72*V8 = 12.

Высоты равны h = S/a = 12/V20 = 12/(2V5) = 6V5/5.


Две стороны параллелограмма заданы уравнениями 2x-y+5=0 и x-2y+4=0, его диагонали пересекаются в точ
sanina611

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите высоту конуса если известно что радиус основания равен 4 см а объём 48 п см^3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bellenru
Герасимова107
Mikhailovich_Viktoriya
Grigorevna23
borisrogovpr3407
ngoncharov573
rada8080
catmos
donliolik
Vladimirovich58
ambiente-deco516
Nazart44446
Елена Васильева839
Наталья
lanac3po