Объяснение:
Дано: ABCD - трапеция, AB ∩ CD = K, AD = 12, AC = 8, , BK = 8
Найти: CD - ?
Решение: Треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, так как угол ∠AKD - общий, а так как по условию ABCD - трапеция, то по определению трапеции её две стороны являются параллельными, так как по условию AB ∩ CD = K, то следовательно BC║AD, тогда угол ∠KBC = ∠KAD как соответственные углы при параллельных прямых и секущей по теореме (BC║AD; AK - секущая). По свойству отрезка AK = AB + BK. Так как треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, то по свойствам подобных треугольников: .
Рассмотрим треугольник ΔABC. ПО теореме косинусов:
.
Угол ∠ACB = ∠CAD как внутренние разносторонние углы при при параллельных прямых и секущей по теореме (BC║AD; AK - секущая).
Так как ∠ACB = ∠CAD, то cos ∠ACB = cos ∠CAD.
По теореме косинусов для треугольника ΔCAD:
.
20°
Объяснение:
Теорема о внешнем угле
<С+<В=80°
Пусть градусная мера угла <С будет у, а градусная мера угла <В будет х.
В равнобедренных треугольниках углы при основании равны.
<ЕКВ=<ЕВК.
<АЕК=<ЕКВ+<ЕВК теорема о внешнем угле треугольника.
<АЕК=2х
<КАЕ=<КЕА.
<КАЕ=2х.
Сумма смежных углов равна 180°
<САВ+80°=180°
<САВ=180°-80°=100°
Система уравнений
<С+<В=80°
<САК+<КАВ=100°
Составляем систему уравнений
{у+х=80° умножаем на (-1)
{у+2х=100°
{-у-х=-80
{у+2х=100
________ метод сложения
х=20°
Подставляем значение х в одно из уравнений
у+х=80°
у=80-20
у=60°
Угол <В=20° меньший угол в треугольнике
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника относятся как 1: 3: 4, его периметр равен 48 см. найдите стороны треугольника, вершины которого находятся в серединных сторон данного треугольника. 1) 6 см, 18 см, 24 см. 2) 3 см, 9 см, 12 см. 3) 12 см, 36 см, 24 см. 4) 8 см, 24 см, 32 см
1ответ: 6 см,18см , 24см.