Татьяна4437 11 месяцев назад 11 Сторона основания правильной четырехугольной пирамиды равна 30 см. Боковое ребро с плоскостью основания образует угол 30°. Вычислите высоту пирамиды. (ответ должен получиться с корнем) Знания Математика ответить Комментировать 1 ответ: andron46 [4] 11 месяцев назад 0 0 У правильной 4-угольной пирамиды в основании лежит квадрат. Найдём половину длины его диагонали: 1/2*√(30²+30²)=15*√2 Далее делаешь доп. построение: из вершины пирамиды проводишь перпендикуляр к основанию (длина этого перпендикуляра и есть искомая высота). Этот перпендикуляр попадёт в точку пересечения диагоналей квадрата, лежащего в основании. Рассматриваешь получившийся прямоугольный треугольник, (состоящий из бокового ребра, половины диагонали и построенного перпендикуляра): косинус 30°=√3/2 ⇒ боковая сторона равна 10*√6. Далее по теореме Пифагора: √((10*√6)²-(15*√2)²)=√(600-450)=√150=5*√6 ответ: 5*√6
Подробнее – на Otvet.Ws – https://otvet.ws/questions/5978459-storona-osnovaniya-pravilnoi-chetyrehugolnoi-piramidy-ravna-30.html
По риссунку видно, что ВС - гипотенуза.
ВК = 12см, КС = 5 см, ОК = ОТ = ОР = радиусы.
Свойства описсаного прямоугольного треугольника твердят, что (по риссунку)
а) РО = ОТ = РА = АТ , Получается квадрат АРОТ у котого все стороны равны;
б) РВ = ВК = 12 см
с) КС = ТС = 5 см
Пусть АР = АТ = х см, тогда АВ = 12 + х, АС = х + 5, ВС = 12 + 5 = 17 см
Используем теорему Пифагора:
ВС² = АВ² + АС²
17² = (12 + х)² + (х + 5)²
289 = 144 + 24х + х² + х² + 10х + 25
2х² + 34х - 120 = 0 скоротим на 2
х² + 17х - 60 = 0
ищим дискриминантом
Д = 289 + 240 = 529 = 23²
х1 = 3
х2 = -20 - не удовлетворяет.
АВ = 12 + 3 =15см
АС = 3 + 5 = 8см
Поделитесь своими знаниями, ответьте на вопрос:
Один из катетов прямоугольного треугольника равен 6, а другой на 2 меньше гипотенузы. найдите площадь треугольника.