1) Проведём произвольно наклонную(ребро двугранного угла).По левую сторону от неё обозначим точку А и опустим из неё перпендикуляр на ребро в точку С1 . По правую сторону от линии ребра отмети м точку А1. Соединим её с точками А и С1. Получим прямоугольный треугольник АС1А1.(на чертеже углы выглядят произвольно). В данном треугольнике АС1=51 расстояние до ребра первой точки. АА1 расстояние от точки до другой грани. Угол АА1С прямой . Аналогично строим второй треугольник ВВ1С2. Эти треугольники подобны поскольку они прямоугольные (АА1 и ВВ1 перпендикулярны к грани) и уних общий линейный угол двугранного угла. Отсюда АА1/АС1=х/34. Где x расстояние до грани от другой точки. x=15*34/51=10.
2)10 сантиметров.
Объяснение:
из KN||AC и AK=KB мы узнаем, что KN является средней линией треугольника ABC.
т.к. KN - средняя линия, ее длина равняется половине АС, то есть 6 сантиметрам.
т.к. отрезок МК перпендикулярен плоскости треугольника АВС треугольник MKN является прямоугольным.
По теореме Пифагора MN^2=MK^2+KN^2
MN^2=6^2+8^2
MN^2=36+64
MN=10 см
Vladimirovna
10.07.2021
Найдем градусную меру угла Р: угол М + угол Р + угол К = 180 градусов (по теореме о сумме углов треугольника); 50 + угол Р + 70 = 180; угол Р = 180 - 120; угол Р = 60 градусов. Из основных свойств касательных известно, что отрезки касательных к окружности, проведенных из одной точки, составляют равные углы с прямой, проходящей через эту точку и центр окружности. То есть отрезки ОМ, ОК и ОР будут являться биссектрисами углов М, К и Р соответственно. Тогда: угол КМО = угол РМО = угол М / 2 = 50/2 = 25 градусов; угол МКО = угол РКО = угол К / 2 = 70/2 = 35 градусов; угол МРО = угол КРО = угол Р / 2 = 60/2 = 30 градусов. а) Рассмотрим треугольник МОК: угол КМО = 25 градусов, угол МКО = 35 градусов. По теореме о сумме углов треугольника: угол КМО + угол МКО + угол МОК = 180 градусов; 25 + 35 + угол МОК = 180; угол МОК = 180 - 60; угол МОК = 120 градусов. б) Рассмотрим треугольник РОК: угол РКО = 35 градусов, угол КРО = 30 градусов. По теореме о сумме углов треугольника: угол РКО + угол КРО + угол РОК = 180 градусов; 35 + 30 + угол РОК = 180; угол РОК = 180 - 65; угол РОК = 115 градусов. в) Рассмотрим треугольник МОР: угол РМО = 25 градусов, угол МРО = 30 градусов. По теореме о сумме углов треугольника: угол РМО + угол МРО + угол МОР = 180 градусов; 25 + 30 + угол МОР = 180; угол МОР = 180 - 55; угол МОР = 125 градусов. ответ: угол МОК = 120 градусов, угол РОК = 115 градусов, угол МОР = 125 градусов.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть площу квадрата вписаного в коло якщо площа правильного шестикутника в писаного в це коло дорівнює 6√3 см/2
1) Проведём произвольно наклонную(ребро двугранного угла).По левую сторону от неё обозначим точку А и опустим из неё перпендикуляр на ребро в точку С1 . По правую сторону от линии ребра отмети м точку А1. Соединим её с точками А и С1. Получим прямоугольный треугольник АС1А1.(на чертеже углы выглядят произвольно). В данном треугольнике АС1=51 расстояние до ребра первой точки. АА1 расстояние от точки до другой грани. Угол АА1С прямой . Аналогично строим второй треугольник ВВ1С2. Эти треугольники подобны поскольку они прямоугольные (АА1 и ВВ1 перпендикулярны к грани) и уних общий линейный угол двугранного угла. Отсюда АА1/АС1=х/34. Где x расстояние до грани от другой точки. x=15*34/51=10.
2)10 сантиметров.
Объяснение:
из KN||AC и AK=KB мы узнаем, что KN является средней линией треугольника ABC.
т.к. KN - средняя линия, ее длина равняется половине АС, то есть 6 сантиметрам.
т.к. отрезок МК перпендикулярен плоскости треугольника АВС треугольник MKN является прямоугольным.
По теореме Пифагора MN^2=MK^2+KN^2
MN^2=6^2+8^2
MN^2=36+64
MN=10 см