nickcook424
?>

Вправильном тетраэдре abcd с ребром 2 точка м — середина вd. а) докажите, что прямая вd перпендикулярна плоскости амс. б) через точку пересечения медиан треугольника аdс проведите прямую, перпендикулярную плоскости амс. в) найдите длину отрезка проведенной прямой, расположенного внутри тетраэдра. г) в каком отношении делит этот отрезок плоскость амс? д) найдите площадь сечения тетраэдра плоскостью, проходящей через середину см перпендикулярно прямой ас.

Геометрия

Ответы

dmdlir

 

 

в правильном тетраэдре abcd с ребром 2 точка м — середина вd.

а)докажите, что прямая вd перпендикулярна плоскости амс.если соединить середину ас с вершинами тетраэдра d и в, то получим равнобедренный треугольникdкв со сторонами - апофемами граней аdс и авс, в котором высота км этого треугольника перпендикулярна прямой вd.а как известно: прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой из этой плоскости.

б)через точку пересечения медиан треугольника аdс проведите прямую, перпендикулярную плоскости амс.

в)найдите длину отрезка проведенной прямой, расположенного внутри тетраэдра.

 

эту длину найдте по теореме пифагора из треугольника кор, образованного отрезками медиан треугольников амс и аdс, равными по 1/3 этих медиан ( медианы треугольника точкой их пересечения делятся в отношении 2: 1, считая от вершины). в этом треугольнике отрезок ор =1/3 медианы кd и является гипотенузой, отрезок кр медианы км треугольника амс - бóльшим катетом, а искомый отрезок ор- меньшим катетом. замечу, что медиана грани асd и медана сечения амс не равны между собой, т.к. эти грани имеют общее основание ас, но разную длину. т.к. км меньше к.

 

г)в каком отношении делит этот отрезок плоскость амс? этот отрезок пересекает эту плоскость в точке пересечения медиан и потому никак ее не делит. (медиана же любого треугольника делит его на два равновеликих треугольника).

д)найдите площадь сечения тетраэдра плоскостью, проходящей через середину см перпендикулярно прямой ас.

это сечение параллельно перпендикулярному к прямой ас сечению через апофемы граней adc и cdb и подобно ему. апофема dl по формуле высоты правильного треугольника а √3: 2=2√3: 2= √3так как половина см равна половине апофемы ( медианы), то она равна ½  √3остальная часть om стороны плоскости сечения равна половинеdo как противолежащая углу 30 °в и равна 1/4 √3dm=1/4*√3+2/4*√3=3/4 ·√3 ( 3/4 dl)коэффициент подобия сечения через середину см и сечения через апофемы равен 3/4площадь сечения через апофемы равна площади равнобедренного треугольника, боковые стороны которого равны апофеме, а основание - половине ребра пирамиды как средняя линия. высоту этого треугольника найдем по теореме пифагораh=√( 3-1)= √2 площадь сечения kdl равна 1*√2=√2 см²отношение площадей подобных треугольников равно квадрату коэффициента их подобия.искомая площадь сечения через середину см=(9 √2): 16 см² ≈ 0,8 см²

один из рисунков   - где сечение = равносторонний треугольник- неверный, не получается удалить. 

Pashinov

даны вершины треугольника авс: а(4; 6), в (-4; 0), с (-1 ; - 4).

находим уравнения прямых ав и вс (с общей вершиной в).

ав: (х - 4)/(-8) = (у- 6)/(-6) сократим знаменатели не -2.

      (х - 4)/4 = (у- 6)/3

        3х - 12 = 4у - 24

        3х - 4у + 12 = 0.

вс: находим аналогично 4х + 3у + 16 = 0.

уравнение двух биссектрис (пары смежных углов) находим в виде:

(a1x+b1y+c1)/√((a1)²+(b1)²) = ±(a2x+b2y+c2)/√(a2²+b2²).

так как знаменатели равны, то приравниваем числители.

3х - 4у + 12 = 4х + 3у + 16.

получаем уравнение биссектрисы угла в:

х + 7у + 4 = 0.

Татьяна902

Большее основание равно 32 см.  

Объяснение:

Рассматриваем трапецию ABCD - прямоугольная (чтобы было понятней: AB - меньшее основание, DC - большее основание, угол С=45°). Проведём высоту BK к большему основанию из вершины угла B. Получили прямоугольник ADBK. По свойству противоположных сторон BK=AD=16см, AB=DK=16см. Теперь рас-м треугольник BCK - прямоугольный. Т. к. угол C=45°, то найдём угол КВС: (сумма углов Δ - 180°) 180°-(90°+45°)= 45°. Следовательно, Δ BCK  -равнобедренный, ВК=СК=16см. DC = DK+KC=16+16=32СМ.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вправильном тетраэдре abcd с ребром 2 точка м — середина вd. а) докажите, что прямая вd перпендикулярна плоскости амс. б) через точку пересечения медиан треугольника аdс проведите прямую, перпендикулярную плоскости амс. в) найдите длину отрезка проведенной прямой, расположенного внутри тетраэдра. г) в каком отношении делит этот отрезок плоскость амс? д) найдите площадь сечения тетраэдра плоскостью, проходящей через середину см перпендикулярно прямой ас.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zaravshan20134
bellaalya13862
marinazubcko16729
sirenashop25
picsell
s2010av565
david-arustamyan1
karasev17764
ИвановичБогословский280
Кузнецов
opscosmiclatte7868
zimin0082
vodexshop2
stark11
LYuBOV