Биссектриса угла треугольника делит противоположную сторону на отрезки длиной 10 и 8 см. найти стороны треугольника, если центр вписанной в него окружности делит эту биссектрису в отношении 3: 2 считая от вершины угла.
достроим два радиуса от точек хорды до центра окружности, как показано на рисунке. пусть радиус окружности равен r. тогда высота получившегося треугольника равна (r - 0.2). очевидно, что получившийся треугольник равнобедренный, и, следовательно, высота, проведенная к основанию, является медианой и биссектрисой. в итоге мы имеем два равных треугольника, один из катетов равен 3.12/2 = 1.56 м
значит косинус угла равен приблизительно 0.643. по таблице брадиса (ну или через калькулятор) мы находим, что это соответствует углу приблизительно в 50°
длина дуги находится по формуле:
[tex]l = \frac{\pi r}{180} * /tex]
альфа - наш найденный угол. поэтому длина дуги будет приблизительно равна 5.39 м (539 см)
marvindkc
03.07.2020
Как известно количество вершин и сторон в любом многоугольнике совпадает, пускай в нашем случае их будет х, дальше будем рассуждать следующим образом: чтобы узнать число диагоналей каждую вершину соединяем с другими вершинами, кроме нее самой и соседних, получаем х *(х-3), но так как при таком соединении диагонали повторяются 2 раза, то их число в х-угольнике будет х*(х-3)/2 по условию имеем соотношение (х*(х-3)/2)/х = 2,5 х² - 3х = 5х х² - 8х = 0 х = 0 либо х = 8 первый корень не удовлетворяет условию,значит х = 8 ответ: 8
ответ:
объяснение:
достроим два радиуса от точек хорды до центра окружности, как показано на рисунке. пусть радиус окружности равен r. тогда высота получившегося треугольника равна (r - 0.2). очевидно, что получившийся треугольник равнобедренный, и, следовательно, высота, проведенная к основанию, является медианой и биссектрисой. в итоге мы имеем два равных треугольника, один из катетов равен 3.12/2 = 1.56 м
таким образом, справедливо уравнение:
[tex]r^2 = r^2 - 0.4r + 0.04 + 2.4336\\0.4r = 2.4736 \\r = 6.184 /tex]
таким образом, радиус равен 6.184 м (или 618.4 см)
для того, чтобы найти длину дуги, необходимо знать градусную меру центрального угла. можно в этом случае воспользоваться теоремой косинусов:
[tex]3.12^2 = r^2 + r^2 - 2r^2\cos \alpha\\3.12^2 = 2r^2 (1 - \cos \alpha = 1 - (\frac{3.12}{r\sqrt{2}})/tex]
значит косинус угла равен приблизительно 0.643. по таблице брадиса (ну или через калькулятор) мы находим, что это соответствует углу приблизительно в 50°
длина дуги находится по формуле:
[tex]l = \frac{\pi r}{180} * /tex]
альфа - наш найденный угол. поэтому длина дуги будет приблизительно равна 5.39 м (539 см)