Найдите радиус окружности, если две хорды длиной 6 и 8 имеют общую точку, принадлежащую окружности, а два другие конца этих хорд являются концами диаметра
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
rusplatok
14.06.2022
Наиболее очевидный частный случай, если трапеция равнобедренная. решения для этого случая выше. рассмотрим вариант с прямоугольной трапецией. пусть высота (она же одна из сторон) равна х, вторая сторона у. тогда периметр х+у+9+15=34 => х+у=10 теперь рассмотрим треугольник, который образует сторона, не образующая прямой угол с основанием, высота опущенная из точки пересечения этой стороны с малым основанием на большое основание и отрезок между этой высотой и и точкой пересечения этой стороны с большим основанием (треугольник cdh, см рисунок). hd=ad-ah, т. к. ан=вс=9, а ad=15, то hd=15-9=6 по теореме пифагора: cd^2=ch^2+hd^2 или cd^2-ch^2=hd^2 т. е. у^2-x^2=36 решаем систему уравнений: { х+у=10 {у^2-x^2=36 например, таким способом: домножаем первое уравнение на (х-у) и складываем его со вторым. получаем уравнение: 10(х-у) -36=0, откуда х-у=3,6. складывая его с первым уравнением, получаем 2х=13,6 т. о. х=6,8 s=((a+b)/2)*h а=9; b=15; h=x=6,8 s=((9+15)/2)*6.8=81.6
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите радиус окружности, если две хорды длиной 6 и 8 имеют общую точку, принадлежащую окружности, а два другие конца этих хорд являются концами диаметра