Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Поделитесь своими знаниями, ответьте на вопрос:
1. объем конуса в 2 раза больше объема вписанного в него шара. найти угол между образующей и плоскостью основания конуса.
V(шара)=(4/3)пr^3
R-радиус основания конуса
r-радиус шара
H-высота конуса
х-угол между образующей и плоскостью основания
(R^2*H)/(4r^3)=2
из осевого сечения конуса видно что H=Rtgx
R^3tgx=8r^3
tgx=(8r^3)/R^3
r/R=tg(x/2)
tgx=8tg^3(x/2)
дальше идут тригонометрические преобразования
tgx=(8sin^3(x))/(1+cosx)^3
(1+cosx)^3=8(1-cos^2(x))cosx
9cos^3(x)+3cos^2(x)-5cosx+1=0
если преобразовать то
(cosx+1)(3cosx-1)=0
xЕ(0;п/2)
сosx=-1
решений нет
cosx=1/3
x=arccos1/3
ответ:arccos1/3