8 см
Объяснение:
Найдём ∠М = 180° - (∠К + ∠Е) = 180° - (90° + 30°) = 180° - 120° = 60°
Так как биссектриса делит угол пополам, то значит ∠ЕМС = ∠СМК = 60° : 2 = 30°
∠Е = ∠ЕМС = 30° - по доказательству и условию. Из этого следует, что ΔЕМС - равнобедренный с бёдрами ЕС и СМ. Значит ЕС = СМ.
Так как ∠СМЕ = 30° , то ∠МСК = 180° - (∠К + ∠СМЕ) = 180° - (90° + 30°) = 180° - 120° = 60°. В прямоугольном треугольнике, катет лежащий против угла 30° равен половине гипотенузы. То есть СМ = 2СК.
ЕК = ЕС + СК = ЕС + СМ : 2 = ЕС + ЕС : 2 = 1,5ЕС. Так как ЕК = 12 см (по условию), то 12 = 1,5ЕС ⇒ ЕС = 12 : 1,5 = 8 см
Так как по вышеприведённому доказательству ЕС = СМ = 8 см
8 см
Объяснение:
Найдём ∠М = 180° - (∠К + ∠Е) = 180° - (90° + 30°) = 180° - 120° = 60°
Так как биссектриса делит угол пополам, то значит ∠ЕМС = ∠СМК = 60° : 2 = 30°
∠Е = ∠ЕМС = 30° - по доказательству и условию. Из этого следует, что ΔЕМС - равнобедренный с бёдрами ЕС и СМ. Значит ЕС = СМ.
Так как ∠СМЕ = 30° , то ∠МСК = 180° - (∠К + ∠СМЕ) = 180° - (90° + 30°) = 180° - 120° = 60°. В прямоугольном треугольнике, катет лежащий против угла 30° равен половине гипотенузы. То есть СМ = 2СК.
ЕК = ЕС + СК = ЕС + СМ : 2 = ЕС + ЕС : 2 = 1,5ЕС. Так как ЕК = 12 см (по условию), то 12 = 1,5ЕС ⇒ ЕС = 12 : 1,5 = 8 см
Так как по вышеприведённому доказательству ЕС = СМ = 8 см
Поделитесь своими знаниями, ответьте на вопрос:
Периметр равнобедренного треугольника равен 50, а боковая сторона на 11 меньше основания. найдите площадь треугольника.
AB=BA=? на 11см <AC
P=50см
S=?
Решение:
2X+(X+11)=50
2X+X+11-50=0
2X+X-39=0
3X-39=0
3X=39 X=39÷3=13см
Проверяем:
(13+11)+13+13=50, значит AB=BA=13, а AC=24.
Теперь находим высоту, ведь SΔ=1/2основания × высоту(h)
Проводим из вершины треугольника высоту к середине основания, соотвецтвенно делим AC на 2 получаем 2 стороны AH=CH=12 по теоремме пифагора
c²=a²+b², где С=13, а А=12
13²=169; 12²=144
b²=169-144=25; b==5
S=12×5=60см²
ответ: 60см²