saidsaleh881
?>

Один из углов равен 40° , второй 140° . можно ли утверждать, что они смежные?

Геометрия

Ответы

Artur-62838
Да, можно ведь в сумма их равна 140 + 40 = 180 , следовательно можно утверждать , что они являются смежными
nane2924329

На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.

 

1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:

BA=BC

∡BAF=∡BCF=90°

∡ABC — общий.

 

В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.

 

Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.

 

Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:

AD=CE

∡DAF=∡ECF=90°

∡D=∡

Подробнее - на -

Объяснение:

ielienakozlova696

Рисунок к вопросу не был приложен, поэтому возможно пирамида выглядит по другому, но построения нужной точки остаётся правильным.

B,O∈(ABC); BO⊂(ABC); AC⊂(ABC). Пусть BO∩AC=P. *по рисунку O - лежит в треугольнике, поэтому прямые BO и AC не могут быть параллельными, а раз они лежат в одной плоскости, то они пересекаются.

O∈BP⊂(SBP) ⇒ O∈(SBP). O∈l; l║SB; SB⊂(SBP) из всего этого следует, что l⊂(SBP). SP⊂(SBP)

Ну и желательно оговорить почему прямые l и SP не параллельны. l⊥(ABC), BP⊂(ABC) ⇒ l⊥BP. Если l║SP, то SP⊥BP поскольку P∈BP. Получается, что из вершины S проведены две не совпадающие высоты к одной плоскости (ABC), что не возможно. Как итог l не параллельно SP, а раз они лежат в одной плоскости (SBP), то они пересекаются.

Пусть l∩SP=T. T - искомая точка, поскольку T∈SP⊂(SAC)

ответ: l∩(SAC)=T.

Это было доказательство того, что построение верное.


SABC — треугольная пирамида, у которой боковое ребро SB перпендикулярно плоскости ABC. Прямая l прох

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Один из углов равен 40° , второй 140° . можно ли утверждать, что они смежные?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Надежда-Алексеевна82
Решите задание 1! Только первое)
agent-ulitka5
Aleksey19801
maglevanyycpt
elenaneretina
Светлана
ev89036973460
Petrakova Ilyushin
a-zotova
fiorire731
magazin7452834
timonina29
dashafox8739
makovei78
igorshevkun