Hа стороне bc равностороннего треугольника взята точка k, так что bc=5*bk.o- центр вписанной и описанной окружности.прямая ко пересекает ас в точке n, on=1.найдите s(abc
Дано: ВК=(1/5)*ВС, КС=(4/5)*ВС, ВН=(√3/2)*ВС (высота равностороннего треугольника), ОН=(√3/6)*ВС, (так как центр О делит ВН в отношении 2:1, считая от вершины). S=(√3/4)*ВС². Опустим перпендикуляр КМ на основание АС. Треугольники НВС и КМС подобны. МК/ВН=КС/ВС=4/5. Отсюда МК=ВН*КС/ВС=(√3/2)*ВС*(4/5)*ВС/ВС=(2√3/5)*ВС. Треугольники NKM и NOH подобны. МК/ОH=NК/ON. Отсюда NK=МК*ON/ОH=(2√3/5)*ВС*1/(√3/6)*ВС=12/5. Тогда ОК=NK-ON= 7/5. По свойству биссектрисы СО в треугольнике NKC: ON/OK=CN/KС. Отсюда CN=ON*KC/OK или CN=(1*(4/5)*ВС)/(7/5)=(4/7)*ВС. По теореме косинусов в треугольнике CNK имеем: NK²=CN²+CK²-2*CN*NK*Cos60= (16/49)*ВС²+(16/25)*ВС² -2*(4/7)*(4/5)*ВС²*(1/2). 144/25= ВС²(624/1225). Отсюда ВС²= 3*49/13. S=(√3/4)*ВС² = 147√3/52.
fancy-decor67
19.12.2020
обозначим А - (см) - катет 1, против известного угла Б - (см) - катет 2, соприкасается с известным углом С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б - если известен катет (А) лежащий против известного угла, то находишь катет Б Б = А / ТАН (известный угол) - если известен прилежащий катет (Б) к известному углу, то находишь катет А А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2, откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)
shangina1997507
19.12.2020
Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую. Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.
ВА⊥AD как стороны квадрата, ВА - проекция наклонной FA на плоскость АВС, значит FA⊥AD по теореме о трех перпендикулярах. Значит, FA - расстояние от точки F до прямой AD. Из ΔABF по теореме Пифагора: FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)
ВС⊥CD как стороны квадрата, ВС - проекция наклонной FС на плоскость АВС, значит FС⊥СD по теореме о трех перпендикулярах. Значит, FС - расстояние от точки F до прямой СD. ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда FC = FA = 4√5 дм.
ВО⊥АС, так как диагонали квадрата перпендикулярны, ВО - проекция FO на плоскость АВС, значит FO⊥AC по теореме о трех перпендикулярах. FO - расстояние от точки F до прямой АС. ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата, Из ΔFBO по теореме Пифагора: FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм
Hа стороне bc равностороннего треугольника взята точка k, так что bc=5*bk.o- центр вписанной и описанной окружности.прямая ко пересекает ас в точке n, on=1.найдите s(abc
S=(√3/4)*ВС².
Опустим перпендикуляр КМ на основание АС.
Треугольники НВС и КМС подобны. МК/ВН=КС/ВС=4/5.
Отсюда МК=ВН*КС/ВС=(√3/2)*ВС*(4/5)*ВС/ВС=(2√3/5)*ВС.
Треугольники NKM и NOH подобны. МК/ОH=NК/ON. Отсюда
NK=МК*ON/ОH=(2√3/5)*ВС*1/(√3/6)*ВС=12/5. Тогда ОК=NK-ON= 7/5.
По свойству биссектрисы СО в треугольнике NKC: ON/OK=CN/KС. Отсюда CN=ON*KC/OK или
CN=(1*(4/5)*ВС)/(7/5)=(4/7)*ВС.
По теореме косинусов в треугольнике CNK имеем:
NK²=CN²+CK²-2*CN*NK*Cos60= (16/49)*ВС²+(16/25)*ВС² -2*(4/7)*(4/5)*ВС²*(1/2).
144/25= ВС²(624/1225). Отсюда ВС²= 3*49/13.
S=(√3/4)*ВС² = 147√3/52.