galinazajceva781
?>

Острый угол а ромба abcd равен альфе. найти отношение радиуса окружности, вписанной в ромб, к радиусу окружности, вписанной в треугольник abc

Геометрия

Ответы

Levinalx4938
Обозначим точку пересечения диагоналей ромба буквой О.
Радиус окружности, вписанной в ромб, равен АО*sin (α/2).
Радиус окружности, вписанной в треугольник ABC, равен АО*sin(α/4).
Отношение радиусов равно sin (α/2) / sin(α/4).
forwandy42

1) ВС=AD+CD=20 (см)

∆ АВС равнобедренный, АВ=ВС=20 (см)

∆ АВD- прямоугольный 

AD=√(AB²-BD²)=√144=12 (см)

Из ∆ АDC гипотенуза АС=√(AD²+CD²)=√160=4√10 см

S (ABC)=AD•BC:2=12•20:2=120 см²

                       * * *

2) Примем меньший катет равным х, тогда гипотенуза 2х. 

По т.Пифагора (2х)²-х*=36 ⇒ х=√12=2√3 м – это ответ. 

                        * * *

3)  Ромб - параллелограмм с равными сторонами, его диагонали взаимно перпендикулярны. Отрезок, перпендикулярный противоположным сторонам параллелограмма  равен его высоте.

МК параллелен и равен высоте ромба ВН.

 Точка О делит диагонали пополам, а сам ромб - на 4 равных прямоугольных треугольника. 

АО=АС:2=32:2=16 . 

ВО=ВD:2=12

Из ∆ АОВ по т.Пифагора АВ=√(АО²+ВО²)=√ 400=20

а) Площадь ромба равна половине произведения его диагоналей. 

S=AC•BC:2=32•24:2=384

б) Площадь ромба равна произведению высоты на его сторону. 

S=a•h – h=S:a

h=384:20=19,2 


1. треугольник abc — равнобедренный с основанием ac, ad — его высота, bd = 16 см, dc = 4 см. найдите
Константин

1) ВС=AD+CD=20 (см)

∆ АВС равнобедренный, АВ=ВС=20 (см)

∆ АВD- прямоугольный 

AD=√(AB²-BD²)=√144=12 (см)

Из ∆ АDC гипотенуза АС=√(AD²+CD²)=√160=4√10 см

S (ABC)=AD•BC:2=12•20:2=120 см²

                       * * *

2) Примем меньший катет равным х, тогда гипотенуза 2х. 

По т.Пифагора (2х)²-х*=36 ⇒ х=√12=2√3 м – это ответ. 

                        * * *

3)  Ромб - параллелограмм с равными сторонами, его диагонали взаимно перпендикулярны. Отрезок, перпендикулярный противоположным сторонам параллелограмма  равен его высоте.

МК параллелен и равен высоте ромба ВН.

 Точка О делит диагонали пополам, а сам ромб - на 4 равных прямоугольных треугольника. 

АО=АС:2=32:2=16 . 

ВО=ВD:2=12

Из ∆ АОВ по т.Пифагора АВ=√(АО²+ВО²)=√ 400=20

а) Площадь ромба равна половине произведения его диагоналей. 

S=AC•BC:2=32•24:2=384

б) Площадь ромба равна произведению высоты на его сторону. 

S=a•h – h=S:a

h=384:20=19,2 


1. треугольник abc — равнобедренный с основанием ac, ad — его высота, bd = 16 см, dc = 4 см. найдите

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Острый угол а ромба abcd равен альфе. найти отношение радиуса окружности, вписанной в ромб, к радиусу окружности, вписанной в треугольник abc
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

annaar497
lulu777
marketing601
ksenyabobrovich7214
marychev55
Анна Марина1873
osipov1984osipov
karien87
istok11
manager-3
Sknyajina5
.............................
КутузоваМартенюк
Sergei Vitalevna
Елена Васильева839
dumpler