2)
sinA =5,25/14 (геом определение синуса)
x/sinA =2*8 (т синусов) => x =16*5,25/14 =6
3)
x+3 =y+2 (описанный ч-к) => y-x=1
Диагональ по т косинусов; cos120= -0,5; cos60=0,5
x^2 +y^2 +xy =9 +4 -2*3*2*0,5 =7
(x-y)^2 =7 -3xy => 1 =7 -3xy => xy=2
(x+y)^2 =7 +xy =9 => x+y=3
4)
sinB =sin(45+30) =√2/2 *√3/2 + √2/2 *1/2 =(√6 +√2)/4
2/sin45 =AC/sinB (т синусов) => AC =2√2(√6 +√2)/4 =√3 +1
√k +1 =√3 +1 => k=3
5)
AB=a, AD=b
P =2(a+b) => a+b =9
S =ab sinA => ab =20
a^2 +b^2 =(a+b)^2 -2ab =81-40 =41
cosA = −√(1-sinA^2) = −3/5 (тупой угол)
BD^2 =a^2 +b^2 -2ab*cosA (т косинусов) =41 +40*3/5 =65
Поделитесь своими знаниями, ответьте на вопрос:
30 ! в остроугольном треугольнике авс из вершин а и с опущены высоты ap и cq на стороны bc и ab. а) докажите, что углы bpq и bac равны. б) известно, что площадь треугольника abc равна 96, площадь четырехугольника aqpc равна 72, а радиус окружности, описанной около треугольника abc, равен 16/√3. найдите pq.
СQ/AP=QB/PB=ВС/АВ
Откуда QB/ВС=РВ/АВ
Значит ΔАВС и ΔРВQ подобны по 2 пропорциональным сторонам (QB/ВС=РВ/АВ) и углу между ними (угол В-общий). Т.к. у подобных треугольников углы равны, то <BPQ=<BAC, ч.т.д.
б) Sавс=96, Sаqрс=72, значит Sрвq=Sавс-Sаqрс=96-72=24
Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия: Sрвq/Sавс=24/96=1/4
Значит QB/ВС=РВ/АВ=PQ/AC=1/2
Из прямоугольного Δ СQB QB/ВС=сos B, cos B=1/2, значит <B=60°
Радиус R окружности, описанной около треугольника ABC равен:
R=AC/2sin B
AC=2R*sin 60= 2*16/√3*√3/2=16
PQ=AC/2=16/2=8