В трапеции ABCD (AD II BC) биссектриса угла ABC пересекает среднюю линию в точке P. Докажите, что угол APB = 90 градусов. -- Биссектриса делит угол АВС пополам. Пусть она пересекает АД в точке К. Угол СВК равен углу ВКА как накрестлежащий. Но СВК=АВК по условию ⇒ углы пи ВК равны, и треугольник ВАК - равнобедренный. Средняя линия трапеции является и средней линией треугольника АВК и делит стороны пополам. ВР=РК.⇒ АР - медиана треугольника ВАК. Так как в равнобедренном треугольнике медиана является и биссектрисой, и высотой, АР - выстоа, перпендикулярна ВК и угол АРВ=90º
Равиль_Евгеньевич1808
08.03.2022
Угол BAE равен EAD (AE - биссектриса BAD) BD параллельна AD (прямоугольник является параллелограммом по условию) угол BEA равен EAD (смежные углы при пересечении параллельных прямых общей секущей прямой AE) Следовательно углы BAE и BEA равны и треугольник BAE - равнобедренный, т.е. |AB| = |EB|
По условию, биссектриса делит сторону на отрезки 12 и 7 см. Если |BE| = 7 см, то периметр P = 4*7 + 2*12 = 52 Если |BE| = 12 см, то периметр P = 4*12 + 2*4 = 56
julya847
08.03.2022
Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый. Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE • AD. Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a • h. Теорема доказана.
--
Биссектриса делит угол АВС пополам.
Пусть она пересекает АД в точке К.
Угол СВК равен углу ВКА как накрестлежащий. Но СВК=АВК по условию ⇒ углы пи ВК равны, и треугольник ВАК - равнобедренный.
Средняя линия трапеции является и средней линией треугольника АВК и делит стороны пополам.
ВР=РК.⇒ АР - медиана треугольника ВАК.
Так как в равнобедренном треугольнике медиана является и биссектрисой, и высотой, АР - выстоа, перпендикулярна ВК и угол АРВ=90º