Надо. биссектрисы углов а и в трапеции авсд пересекаются в точке к , лежащей на стороне на стороне сд. докажите, что точка к равноудалена от прямых ав, вс и ад
Опустим из точки К перпендикуляры на стороны AD, AB и ВС(на продолжение ВС). Прямоугольные треугольники АКЕ, АКН равны по гипотенузе АК и острому углу. Значит KЕ=KH. (Признак равенства по гипотенузе и острому углу). Прямоугольные треугольники НКВ и FКB равны по гипотенузе ВК и острому углу. Значит KF=KH. (Признак равенства по гипотенузе и острому углу). KЕ=KH и KF=KH. Следовательно и KЕ=KF. Итак, доказано, что перпендикуляры КЕ, КН и КF равны. Следовательно точка К равноудалена от прямых АВ, ВС и АD. Что и требовалось доказать.
hacker-xx1
10.08.2021
Пусть имеем четырёхугольник АВСД. Свойство четырёхугольника, вписанного в окружность, - сумма противолежащих углов равна 180 градусов. Разделим его диагональю АС на 2 треугольника: АВС и АСД. Так как <D = 180-(<B), то cos D = -cos B. Выразим по теореме косинусов сторону АС из двух треугольников, обозначив АС=у, cos B = х, а cos Д = -х. у² = 3²+10² - 2*3*10*х = 109 - 60х, у² = 5² + 8² +2*5*8*х = 89 + 80х. Вычтем из второго уравнения первое: -20+140х = 0 или х = 20/140 = 1/7. Это cos B = 1/7, а cos Д = -1/7. Теперь можно найти значение диагонали АС: АС² = 109-60*(1/7) = (109*7 - 60) / 7 = 703/7 ≈ 10,021406.
Площадь заданного четырёхугольника определим как сумму площадей треугольников АВС и АСД, площадь которых найдём по формуле Герона. Полупериметр АВС = 11,510703, АСД = 11.510703.
5. R =c/2 где с гипотенуза ; По теореме Пифагора : c=√(6²+8²) =√(36+64) =√100 =10 (см) . R =c/2 =10 см /2 =5 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Надо. биссектрисы углов а и в трапеции авсд пересекаются в точке к , лежащей на стороне на стороне сд. докажите, что точка к равноудалена от прямых ав, вс и ад
Прямоугольные треугольники АКЕ, АКН равны по гипотенузе АК и острому углу. Значит KЕ=KH. (Признак равенства по гипотенузе и острому углу).
Прямоугольные треугольники НКВ и FКB равны по гипотенузе ВК и острому углу. Значит KF=KH. (Признак равенства по гипотенузе и острому углу).
KЕ=KH и KF=KH. Следовательно и KЕ=KF. Итак, доказано, что перпендикуляры КЕ, КН и КF равны.
Следовательно точка К равноудалена от прямых АВ, ВС и АD.
Что и требовалось доказать.