Плоскости квадрата АВСD и треугольника АМВ взаимно перпендикулярны, следовательно, угол МНК между лучами, проведенными из одной точки на их общей стороне АВ перпендикулярно к ней прямой.
МН перпендикулярна плоскости квадрата⇒ перпендикулярна любой прямой, проходящей через её основание Н.
а) ВС и АМ лежат в разных плоскостях, не параллельны и не пересекаются -- они скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися.
АМ -наклонная, ее проекция НА перпендикулярна стороне квадрата АD.⇒ АМ⊥АD. Сторона ВС параллельна АD, следовательно, ВС⊥АМ
б) Искомый угол - угол между МС и ее проекцией НС на плоскость квадрата, т.е. угол МСН.
∆ АМВ равнобедренный, его высота МН ещё и медиана ⇒ АН=ВН=2.
По т.Пифагора МН=√(AM²-AH²)=√(24-4)=√20
НС - диагональ прямоугольника НВСК. По т.Пифагора
НС=√(BH²+BC²)=√(4+16)=√20
В прямоугольном ∆ МНС катеты МН=СН ⇒ его острые углы равны 45°
Угол между МС и плоскостью квадрата равен 45°
Поделитесь своими знаниями, ответьте на вопрос:
Точка m не лежит в плоскости параллелограмма abcd. на отрезке am выбрана точка e так, что me: ea=2: 3 а) постройте точку f - точку пересечения прямой mb с плоскостью cde б) найдите ав, если ef=10см
1) В плоскости СДЕ провести отрезок ЕВ1, равный АВ и параллельный ему. Он одновременно находится в плоскости СДЕ и в вертикальной плоскости МАВ. Поэтому точка F пересечения отрезка МВ с плоскостью СДЕ находится на пересечении отрезков МВ и ЕВ1.
2) В плоскости МАВ 2 подобных треугольника: МЕF и FF1B ( точка F1 - проекция точки F на АВ).
Отрезок FF1 равен ЕА.
Поэтому F1B = (3/2)*10 = 15 см.
АF1 = ЕF = 10 см.
Отсюда АВ = 10+15 = 25 см.
Примечание: данное решение - частный случай, так как где бы ни находилась точка М, ∆ MFE и ∆ AMB остаются подобными, отношение ЕF:AB=2:5, и АВ получается равным 25.