sin угла acd=ad/ac
sin угла acd=3/5
sin угла acd=0.6
ответ: 0.6
Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
64+x²=36+196-28x+x²; 28x=168; x=6
Объяснение:
Объяснение:
Дано:
ABCD- ромб
АВ=20см
ВD=32см
АС=?
Решение
Диагонали ромба пересекаются перпендикулярно и точкой пересечения делятся пополам.
ВО=ВD:2=32:2=16см.
∆АОВ- прямоугольный треугольник.
По теореме Пифагора
АО=√(АВ²-ВО²)=√(20²-16²)=√(400-256)=
=√144=12см.
АС=2*АО=2*12=24см.
ответ: АС=24см.
2)
Дано:
Окружность
О-центр окружности
АВ=8см хорда
ОА=ОВ=R=5см
ОК=?
Решение
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ.
ВК=КА
ВК=АВ:2=8:2=4см.
Теорема Пифагора
ОК=√(ОВ²-КВ²)=√(5²-4²)=√(25-16)=3см
ответ: 3см
Поделитесь своими знаниями, ответьте на вопрос:
Дан прямоугольник abcd, ab=4, bc=3. найдите sin угла acd
по теореме пифагора ac=корень(ab^2+bc^2)
ac=корень(3^2+4^2)=5
противоположные стороны прямоугольника равны
bc=ad=3
по определению синуса острого угла прямоугольного треугольника
sin угла acd=ad/ac
sin угла acd=3/5
sin угла acd=0.6
ответ: 0.6