Объяснение:
Дано: - правильная усеченная четырехугольная пирамида,
,
,
,
, AK = KB,
Найти: FK - ?
Решение: По свойствам правильной усеченной четырехугольной пирамиды её основаниями являются квадраты, а высота пирамиды проходит через центры квадратов. Так точка O - точка пересечения диагоналей квадрата ABCD, то диагонали точкой пересечения делятся пополам по свойствам квадрата. Так как диагонали квадрата равны по теореме, то и половины диагоналей также равны, тогда AO = OB и треугольник ΔAOB - равнобедренный. Так как для треугольника ΔAOB отрезок OK - медиана
(по условию AK = KB), то по теореме медиана равнобедренного треугольника проведенная к основания является биссектрисой и высотой. Треугольник ΔBOK подобен треугольнику ΔBDA по двум углам так как угол ∠OBK - общий и OK ⊥ AB, и DA ⊥ AB.
Так как ΔBOK подобен треугольнику ΔBDA:
.
Так как квадрат ABCD подобен квадрату так как все углы квадрата равны 90°, то можно записать отношения соответствующих элементов квадрата:
.
TFOK - трапеция так как FT║OK по свойствам правильной усеченной четырехугольной пирамиды . Рассмотрим трапеция TFOK.Трапеция TFOK - прямоугольная так как по условию
и OK ⊂ ABC .Проведем высоту из точки F в точку H на основании OK. Так как FH - высота трапеции и TO - высота трапеции, то FH = TO = 4. По свойствам трапеции четырехугольник TOHF - прямоугольник, тогда его противоположные стороны равны по свойствам прямоугольника и TF = OH = 4. OK = OH + HK ⇒ HK = OK - OH = 7 - 4 = 3. Рассмотрим прямоугольный (FH ⊥ OK по построению) треугольник ΔFHK. По теореме Пифагора:
.
1)Рисуешь небольшой квадрат, и имянуешь каждый угол по порядку так, как написано в условии.
получается:
а)От G до HE(не включительно) будет всего лишь :
GH=4см, т.к. просят отрезок именно НЕ, если бы просили ЕН, то было бы GF, FE =4+4=8см.
б)Центр квадрата намного легче посчитать, в отличие от круга.
Центр квадрата будет равен половине его любой стороны (все стороны равны), значит.
О=4:2=2см.
Если О действительно центр, то самое короткое расстояние от О до любой стороны будет его перпендикуляром, и в нашем случае будет равно 2 см.
ответ:а) 4см,б)2см.
Удачи.
Объяснение:
С тебя лайк.
Поделитесь своими знаниями, ответьте на вопрос:
Abcd-трапеция.ab=6, bc=5, kd=3, угол а=60 градусам, bh принадлежит ad, ck принадлежит ad а) как называют отрезок bh? б) найдите ad и p abcd. запишите решение.
Условие дано неточно. ВН и СК не могут принадлежать АD, поскольку точки В и С принадлежат стороне ВС, которая параллельна АD. Правильно: АВСD – трапеция. АВ=6, ВС=5, KD=3, угол А = 60°. BH перпендикулярна AD, CK перпендикулярна AD. Найдите AD и Р(ABCD).
ответ: ВН - высота. Р(АВСD)= 28 (ед. длины)
* * *
а) Отрезок ВН опущен из вершины трапеции на ее основание, перпендикулярен ему и является её высотой.
б) Так как угол ВНА=90°, треугольник АВН - прямоугольный. Сумма острых углов прямоугольного треугольника 90° => угол АВН=30°. Катет АН противолежит углу 30° и равен половине гипотенузы АВ ( свойство). АН=6:2=3.
Четырехугольник НВСК - прямоугольник, т.к его углы прямые. Противоположные стороны прямоугольника равны. НК=ВС=5. и СК=ВН. Рассмотрим ∆ СКD. Катет СК=ВН, катет КD=AH (найдено). ∆ СКD=∆АВН по двум катетам. => СD=АВ=6.
АD=AH+HK+KD=3+5+3=11
Р(ABCD)=AB+BC+CD+AD=6+5+6+11=28.