Доказательство: 1) Через точку B2 проведем прямую EF, EF ∥ A1A3. 2) Рассмотрим четырехугольник A1FB2A2.- A1F ∥ A2B2 (по условию),- A1A2 ∥ FB2 (по построению).Следовательно, A1FB2A2 — параллелограмм. По св-ву противолежащих сторон параллелограмма, A1A2=FB2. 3)Аналогично доказываем, что A2B2EA3 — параллелограмм и A2A3=B2E. 4) Так как A1A2=A2A3 (по условию), то FB2=B2E. 5) Рассмотрим треугольники B2B1F и B2B3E.- FB2=B2E (по доказанному),- ∠B1B2F=∠B2EB3 =∠B2FB1=∠B2EB3. Следовательно, треугольники B2B1F и B2B3E равны.Из равенства треугольников следует равенство соответствующих сторон: B1B2=B2B3. Теорема доказана. :)
yusliva
11.03.2022
Если из точки вне окружности к ней проведены касательная и секущая, то квадрат отрезка касательной от этой точки до точки касания равен произведению длин отрезков секущей от этой точки до точек ее пересечения с окружностью. чертеж: нарийсуй окружность, потом, например, слева от окр. точку a, от нее касательную (точку пересеч обозначь b), и из точки a секущую (точки пересечения с окр. обозначь (слева направо) c и d). подпиши над ab: 10-(x+4); над ac: x; cd: x+4; ad: 2x+4. решение: составим уравнение: (10-(x+4))^2=x*(2x+4) (6-x)^2=2x^2+4x; 36-12x+x^2-2x^2-4x=0; x^2+16x-36=0; d=256-4*(-36)=400; корень из d = 20; x = (-16+20)/2=2; 10-(x+4)=6-x=4. ответ: длина касательной 4 см.
Nugamanova-Tatyana840
11.03.2022
Если из точки вне окружности к ней проведены касательная и секущая, то квадрат отрезка касательной от этой точки до точки касания равен произведению длин отрезков секущей от этой точки до точек ее пересечения с окружностью. чертеж: нарийсуй окружность, потом, например, слева от окр. точку a, от нее касательную (точку пересеч обозначь b), и из точки a секущую (точки пересечения с окр. обозначь (слева направо) c и d). подпиши над ab: 10-(x+4); над ac: x; cd: x+4; ad: 2x+4. решение: составим уравнение: (10-(x+4))^2=x*(2x+4) (6-x)^2=2x^2+4x; 36-12x+x^2-2x^2-4x=0; x^2+16x-36=0; d=256-4*(-36)=400; корень из d = 20; x = (-16+20)/2=2; 10-(x+4)=6-x=4. ответ: длина касательной 4 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Напишите доказательство в виде дано теоремы фалеса
Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на другой его стороне.
Дано:
∠COD,A1B1 ∥ A2B2 ∥ A3B3,A1, A2, A3 ∈OC, B1, B2, B3 ∈OD,A1A2=A2A3.
Доказать:
B1B2=B2B3.
Доказательство:
1) Через точку B2 проведем прямую EF, EF ∥ A1A3.
2) Рассмотрим четырехугольник A1FB2A2.- A1F ∥ A2B2 (по условию),- A1A2 ∥ FB2 (по построению).Следовательно, A1FB2A2 — параллелограмм. По св-ву противолежащих сторон параллелограмма, A1A2=FB2.
3)Аналогично доказываем, что A2B2EA3 — параллелограмм и A2A3=B2E.
4) Так как A1A2=A2A3 (по условию), то FB2=B2E.
5) Рассмотрим треугольники B2B1F и B2B3E.- FB2=B2E (по доказанному),- ∠B1B2F=∠B2EB3 =∠B2FB1=∠B2EB3.
Следовательно, треугольники B2B1F и B2B3E равны.Из равенства треугольников следует равенство соответствующих сторон: B1B2=B2B3.
Теорема доказана. :)