Кулагина_Владимир1179
?>

Дан треугольник авс, в котором вектор bb1=вектору m, вектор ba= вектору n , где точки - середины сторон треугольника, лежащие напротив соответствующих вершин, о – точка пересечения медиан. выразить векторы co, св, оа через векторы m и n , указать их координаты в этом базисе.

Геометрия

Ответы

denisov4
OA=-1/2m+n;CB=CB1-m..
nekrasovaolga27

Sastd =  67,5+15√3  см².

Объяснение:

Площадь боковой поверхности пирамиды ASTD - это сумма площадей боковых граней ATS, ADS и ATD, так как по принятому обозначению пирамиды ее вершина обозначается первой.

Площадь грани ADS (правильного треугольника) равна

Sads = √3*а²/4  = √3*100/4 = 25√3 см².

Площадь грани ATD (прямоугольного треугольника) равна

Satd = (1|2)*AT*AD = 30 см².

Площадь грани ATS равна

Sasb = Sads = 25√3 см², так как площади граней равны.

Площади треугольников АST и BST имеют общую высоту (высоту грани ASB) и относятся как стороны, к которым проведена эта высота, то есть Sats/Sbts = 3/2. А так как Sasb = Sats+Sbts, то

Sats/Sasb = 3/5. тогда

Sats = (3/5)*Sasb = (3/5)*25√3 = 15,5 см².

Площадь боковой поверхности пирамиды ASTD равна:

Sastd = 25√3 + 30 + 37,5 = 67,5+15√3  см².

P.S. На всякий случай:

Площадь грани STD можем найти по Герону.

По теореме косинусов в треугольнике AST:

ST² = √(AT²+AS²-2*AT*AS*Cos60). (угол SAT = 60, так как грани - правильные треугольники). Тогда

ST = √(136-2*AT*AS*(1/2)) = √76.

DT = √(AT²+AD²) = √136.

SD = 10.

Полупериметр равен (10+√136+√76)/2 и по Герону:

Sstd = √((10+√136+√76)*(10+√76-√136)*(10+√136-√76)*(√136+√76-10))/4  или

Sstd = √((10+√76)²-136)*(136-(10-√76)²)/4  или

Sstd = √((20√76+40)*(20√76-40))/4 или

Sstd = √((30400-1600)/4 = √28800/4 = 120√2/4 =30√2.


Точка т лежит на ребре ав правильной пирамиды sabcd, длина каждого ребра которой равна 10 см, at: tb
olgakozelskaa492

1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.

2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника  

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.

Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;

2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;

3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1) 

4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дан треугольник авс, в котором вектор bb1=вектору m, вектор ba= вектору n , где точки - середины сторон треугольника, лежащие напротив соответствующих вершин, о – точка пересечения медиан. выразить векторы co, св, оа через векторы m и n , указать их координаты в этом базисе.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Yuliya1693
Stenenko
Корягина
Семеновна-Павел
Витальевна
vladimyrgorbunov
Viktor1316
shakhnina90
Екатерина
kit036
minaskorolev8
Yevgenevich775
Anna572
rinan2013
annaar497