Втреугольнике abc угол с—прямой; ас = 6 см, вс = 12 см. на стороне вс взята точка d так, что угол adc = 90° - угол в .на какие части точка d делит сторону вс?
ответ: на части 3 см и 9 см важно, что получится еще один прямоугольный треугольник ADC с острым углом = 90° - угол В, т.е. второй острый угол в этом треугольнике равен углу В и, следовательно, эти прямоугольные треугольники подобны))) Сумма острых углов прямоугольного треугольника 90°))) можно записать отношение соответственных сторон, а можно вспомнить тригонометрию... и найти тангенс угла (ведь даны по условию два катета)))
Задание 1. Доказать, что диагонали делят параллелограмм на 4 равновеликих треугольника. Доказательство. Диагонали параллелограмма точкой пересечения делятся пополам. Пусть половина первой диагонали = а, а половина второй диагонали = b. Значит площадь каждого из получившихся треугольников равна (1/2)a*b*Sinα - формула, где α - угол между диагоналями. Углы, образованные при пересечении диагоналей - смежные и равны α и 180-α. Поскольку Sin(180-α) = Sinα (формула), то площади всех 4 треугольников равны. Что и требовалось доказать. Задание 2. Найти площадь равнобокой трапеции с основаниями 15 см и 39 см, в которой диагональ перпендикулярна к боковой стороне. Решение. Поскольку высота из тупого угла равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности оснований = 12см (свойство), а высота нашей трапеции - высота прямоугольного треугольника из прямого угла, то эта высота по ее свойствам равна h=√((39-12)*12)=18см. Тогда площадь трапеции равна по формуле S=(AD+BC)*h/2 : S=(39+15)*18/2=486см². Задание 3. Соответствующие стороны двух подобных треугольников относятся как 2 : 3. Площадь второго треугольника равна 81 см2. Найдите площадь первого треугольника. Площади подобных треугольников относятся как квадрат коэффициента подобия. Значит S1=(2/3)²*S2. S1=(4/9)*81=36см². Задание 4. Основания трапеции относятся как 2:3, а ее площадь равна 50 см2. Найти площади: а) двух треугольников, на которые данная трапеция делится диагональю б) четырех треугольников, на которые данная трапеция делится диагоналями. Решение. Диагонали трапеции делят ее на 4 треугольника, из которых два, прилежащих к основаниям, подобны, а два прилежащих к боковым сторонам, равновелики (равны по площади). а). Sabcd=(2x+3x)*h/2 =50см² (площадь трапеции дана). => 5xh=100см² и xh=20см². Sabd=Sacd=(1/2)*3xh = 30см². Sabo=Scod= Sabcd-Sabd= 50-30=20см². ответ: 30см² и 20см². б) Sboc=(1/2)*2x*(2/5)h=0,4*xh =0,4*20=8см². Saod=(1/2)*3x*(3/5)h=0,9*xh =0,9*20=18см². Saob=Saod=Sabd-Scod=(1/2)*3xh - 0,9*xh = 06xh =12см². ответ: Sboc=8см²,Saod=18см², Saob=Saod=12см².
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc угол с—прямой; ас = 6 см, вс = 12 см. на стороне вс взята точка d так, что угол adc = 90° - угол в .на какие части точка d делит сторону вс?
важно, что получится еще один прямоугольный треугольник ADC
с острым углом = 90° - угол В,
т.е. второй острый угол в этом треугольнике равен углу В
и, следовательно, эти прямоугольные треугольники подобны)))
Сумма острых углов прямоугольного треугольника 90°)))
можно записать отношение соответственных сторон,
а можно вспомнить тригонометрию...
и найти тангенс угла (ведь даны по условию два катета)))