Впараллелограме abcd со стороной ad=25, проведена биссектриса угла a проходящая через точку p на стороне bc найдите пириметр трапеции apcd если его средняя линия =15, а диагональ ac=5√ 46
AM =(1/2)*√(2(AB²+.AC²) -BC² ) . Эту известную формулу для вычисления медианы можно было применить сразу . 5 =(1/2) *√(2(AB² +(4√2)²) - AB²)⇔4*25 =AB² +64 ⇒AB =BC=6 . Зная стороны треугольника можно вычислить ее площадь . здесь удобно S = 2S(ABM) =2√7*1*4*2 =4√14 (прим формула Герона).
ответ : 4√14 кв. ед.
Егорова
11.07.2022
Это очень просто всё. Для начала надо найти высоту BM к основанию AC. M - середина AC. Ясно, что она "режет" треугольник на два "египетских" (со сторонами 9,12,15), то есть равна 12. Эта высота к тому же медиана и биссектриса. Все точки в задаче лежат на ней. 1) поэтому от основания до точки пересечения медиан G будет MG = 12/3 = 4; точка пересечения биссектрис I находится так BI/IM = AB/AM = 15/9; => MI = BM*9/(15 + 9) = 12*3/8 = 9/2; отсюда IG = MI - MG = 1/2; 2) тут есть множество решить. Мне нравится рассуждать так. Если продлить AM до пересечения с описанной окружностью в точке B1, то AM*MC = BM*MB1; 9^2 = 12*MB1; MB1 = 27/4; BB1 = 12 + 27/4 = 75/4; Это диаметр описанной окружности (центр O). Радиус OB = 75/8; Поэтому MO = 12 - 75/8 = (96 - 75)/8 = 21/8;
как-то так, проверяйте. Полезно помнить, что в остроугольных треугольниках отношение r/R близко к 2 (у равностороннего точно равно 2); в данном случае r = 9/2; R = 75/8; r/R = 12/25;
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Впараллелограме abcd со стороной ad=25, проведена биссектриса угла a проходящая через точку p на стороне bc найдите пириметр трапеции apcd если его средняя линия =15, а диагональ ac=5√ 46
Значит, РС+AD=2·15
РС+25=30
РС=5
ВС=ВР+РС
25=ВР+5
ВР=25-5=20
∠PAD=∠BPA - внутренние накрест лежащие при параллельных ВС и AD и секущей АР.
∠ВАР=∠РАD - биссектриса АР делит угол А пополам.
Значит ∠BPA =∠ВАР и треугольник АВР - равнобедренный АВ=ВР=20
Противоположные стороны параллелограмма равны CD=AB=20
Из треугольника АСD по теореме косинусов:
АС²=AD²+DC²-2·AD·DC·cos ∠D
(5√46)²=25²+20²-2·25·20·cos ∠D
1150=625+400-1000·cos ∠D
cos ∠D =-0,125
Противоположные углы параллелограмма равны
∠В=∠D
Из треугольника АBP по теореме косинусов:
АP²=AB²+BP²-2·AB·BP·cos ∠B
АP²=20²+20²-2·20·20·(-0,125)
АP²=400+400+100
АP²=900
AP=30
Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80
ответ. Р=80