а) У равнобедренного треугольника углы при основании равны; Пусть угол при основании - х, тогда
х+х+30=180(сумма всех углов треугольника = 180°)
2х+30=180
2х=150
х=75
ответ: угол при основании равен 75°
б) 2 варианта решения:
1) Если угол при вершине, противолежащий основанию = 40°, тогда угол при основании - х
2х+40=180
2х=140
х=70;
ответ: остальные углы равны 70°
2) Если угол при основании = 40°, тогда второй угол при основании также равен 40°. Пусть угол противолежащий основанию - х, тогда
40+40+х=180
80+х=180
х=180-80
х=100; ответ: угол, противолежащий основанию равен 100°
в) Угол при основании равен 30°, тогда второй угол при основании также равен 30°(т.к. треугольник равнобедренный)
пусть угол, противолежащий основанию - х, тогда
30+30+х=180
60+х=180
х=180-60
х=120
ответ: угол, противолежащий основанию равен 120°
L, M - середины сторон.
Продлим LM до пересечения с AB в точке K
BL=LC (по условию)
∠KBL=∠C (накрест лежащие при AB||CD)
∠KLB=∠MLC (вертикальные)
△KBL=△MCL (по стороне и прилежащим углам) => KL=LM
△KAM: AL - биссектриса (по условию) и медиана, следовательно и высота, ∠ALM=90.
Продлим LM до пересечения с AD в точке N
Рассуждая аналогично, △MDN=△MCL => MN=LM =>
△NAL: AM - биссектриса/медиана, следовательно и высота, ∠AMN=90
Из точки A можно провести только один перпендикуляр к прямой LM. Следовательно данная конфигурация невозможна.
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном треугольнике с гипотенузой с, один из катетов - а. найдите второй катет, если: с=9 а=6
b²=c²-a²
b²=81-36
b²=45
b=√45