Лайфхак один и для маленьких, и для больших: надо находить ОД и на него сокращать. Постепенно (пошагово), или найдя НОД путем разложения на простые множители.
1) 550/418=550:2/418:2=275/209= 275:11/209/11=25/19 -постепенно делим на простые числа, пока не получим несократимую дробь
2)550:22/418:22=25/19 здесь НОД(550,418)=22=2*11
Здесь 2 и 11 -простые числа, просто подбираем из таблицы, есть куча сайтов с калькулятора ми сокращения дробей
3) 3255 /3720= 3255 : 465 / 3720 : 465 = 7/8. Здесь 465 -это НОД обоих чисел: 465=3*5*31 -простые числа
Поделитесь своими знаниями, ответьте на вопрос:
1)в треугольнике авс известно, что ав=7, вс= 3 корень из 3, синус а= 3 корень из 3 деленное на 14. найти угол с. 2)точка о равноудалена от вершин треугольника авс. найти угол в, если угол аос=100. 3) основания прямоугольной трапеции 5 и 12, меньшая боковая сторона 7. найти больший угол трапеции.
---
∠C -?
По теореме синусов : c/sin∠C=a/sin∠A || AB/sin∠C=BC/sin∠A|| ;
7/sin∠C =3√3/(3√3)/14))⇒7/sin∠C =14 ⇒∠C =30° или ∠C =150°.
∠A < 30° (не может быть >150°) т.к. (3√3)/14 <1/2 .
2) OA=OB =OC , ∠AOC =100° .
---
∠B -?
По условию задачи OA=OB =OC⇒ точка O является центром описанной окружности и ∠AOC центральный угол. Градусная мера малой дуги
AC равно 100°. ∠B =(1/2)*(дугаAC) =50° (как вписанный угол).
3) ∠A = ∠B =90° , BC||AD , BC=5 ,AD =12 , AB =7.
---
∠BCD -?
Проведем CH⊥AD , H∈[AD] ⇒ HC=AB =7 , HD =AD - AH =AD - BC =7.
Получилось CH=HD в прямоугольном треугольнике CHD ⇒∠D =45° , поэтому
∠BCD =180° - ∠D =180° -45 ° =135°.