Дано: ABCD - прямоугольник, AB=DC= 12 см, BC=AD=16 см, AC и BD - диагонали ABCD, AC∩BD = т.О, K ∉ ABCD, OK⊥ABCD, КО=5√5 см.
Найти: АК.
Решение.
Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности => точка О - центр описанной около прямоугольника ABCD окружности.
Длины отрезков AO, OC, BO, OD равны между собой и равны радиусу описанной окружности.
AO=OC=BO=OD.
Если проекции наклонных, проведённых из одной точки, равны, то равны и наклонные. Соответственно, ВК=КС=КD=KA (поскольку проекции данных наклонных (ВО, СО, DO и AO) равны между собой).
Найдём диагональ прямоугольника ABCD.
В прямоугольном ΔBAD (∠BAD=90°) по т. Пифагора:
BD²= AB²+AD²;
BD²= 12²+16²;
BD²= 400;
BD= 20 (-20 не подходит).
Диагонали прямоугольника равны, пересекаются и в точке пересечения делятся пополам => BO=OD=АО=ОD=½ BD= 20÷2=10 (см).
В прямоугольном ΔАОК (∠AOK=90°) по т. Пифагора:
АК²= АО²+ОК²;
АК²= 10²+(5√5)²;
AK²= 100+125;
AK²= 225;
AK= 15 (-15 не подходит).
Расстояние от т.К до вершин прямоугольника равно 15 см.
ОТВЕТ: 15 см.
P.S. Очень надеюсь, что все понятно расписала...)
ответ: Угол DOM=69°
Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Из суммы углов треугольника
Угол DOM=180°-∠ОМD-∠МDО=180°-45°-66°=69°
Поделитесь своими знаниями, ответьте на вопрос:
Точки а и b лежат на сфере. расстояние от центра сферы до прямой ав равно 4 см. найдите радиус сферы, если ав= 6 см. нужен ответ.
R=√(AH²+OH²)=√(3²+4²)=5
ОТВ: R=5