Впрямоугольном параллепипеде abcda1b1c1d1 ab=4 ab1=15 b1d=корень 305. найдите расстояние между ab и b1d и изобразите на рисунке общий перпендикуляр этих скрещеваемых прямых. желательно с рисунком
Для построения общего перпендикуляра скрещивающихся прямых АВ и В1D проведем плоскость через DB1 параллельно АВ. Это будет плоскость DСВ1А1, т.к. АВ||А1В1. Теперь проектируем прямую АВ на эту плоскость. АК⊥А1D, ВМ⊥В1С. Проекция получается КМ. ИЗ точки О1, где пересеклись КМ и В1D, проводим О1О параллельно АК. О1О= и будет общим перпендикуляром для скрещивающихся прямых. О1О=АК. СС1=√((DC1)²-DC²)=√209. B1C=√(B1D²-DC²)=√(289=17 B1C1=√(B1C²-C1C²)=√80 Из ΔААD найдем АК=АА1*АD/A1D=√209*√80/17=4√1045/17.
sbarichev330
22.11.2021
Каждая диагональ делит четырехугольник на 2 треугольника; всего получается 4 треугольника. Стороны фигуры, периметр которой нужно найти, являются средними линиями этих треугольников, которые, как известно равны половине противолежащей стороны треугольника. Противолежащими сторонами являются диагонали заданного четырехугольника. Значит каждые из двух противоположных сторон вписанного четырехугольника, периметр которого мы ищем, равны половине одной диагонали заданного четырехугольника, а другие две стороны равны по половине другой диагонали. Таким образом, периметр искомого четырехугольника равен сумме диагоналей заданного четырехугольника. P=13+8=21(см).
Галина-Юлия1292
22.11.2021
1)Длины сторон треугольника равны a, b, c. между этими числами имеется закономерность: a2 =b2+c2+bc. Чему равен угол, лежащий против стороны a ? Решение: Пусть против стороны а лежит угол А. По теореме косинусов а2=b2+c2-2bc*cosA По условию a2=b2+c2+bc. Значит bc=-2bc*cosA. Отсюда cosA=-1/2. A=120 2)Найдите длину стороны AC треугольника ABC, где угол B тупой, AB=13, BC=2, sinB=5/13 Решение: По теореме косинусов AC2=AB2+BC2-2*AB*BC*cosBcos2B=1-sin2B=1-25/169=144/169 Так как по условию угол В - тупой, то cosB=-12/13 Далее подставляем известные значения в формулу теоремы косинусов:AC2= 132+22-2*13*2*(-12/13)=221 Следовательно, AC=√221
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном параллепипеде abcda1b1c1d1 ab=4 ab1=15 b1d=корень 305. найдите расстояние между ab и b1d и изобразите на рисунке общий перпендикуляр этих скрещеваемых прямых. желательно с рисунком
Теперь проектируем прямую АВ на эту плоскость. АК⊥А1D, ВМ⊥В1С. Проекция получается КМ. ИЗ точки О1, где пересеклись КМ и В1D, проводим О1О параллельно АК. О1О= и будет общим перпендикуляром для скрещивающихся прямых.
О1О=АК. СС1=√((DC1)²-DC²)=√209.
B1C=√(B1D²-DC²)=√(289=17
B1C1=√(B1C²-C1C²)=√80
Из ΔААD найдем АК=АА1*АD/A1D=√209*√80/17=4√1045/17.