ответ: Верхнее основание 3см
Объяснение: так как углы при основании составляют 45° каждый, то они находятся у нижнего основания и эта это трапеция равнобедренная. Обозначим основание, которое нужно найти -х. Проведём к нижнему основанию высоту с двух вершин верхнего основания. Получился прямоугольный треугольник с углом 45°. Если в прямоугольном треугольнике один угол равен 45° то второй тоже будет 45°, их чего следует,что этот треугольник равнобедренный, и высота равна отрезку при основании. Две высоты, проведённые к нижнему основанию отсекают в нём посередине часть отрезка равную верхнему основанию. Так как трапеция равнобедренная, то отрезки образующиеся на нижнем основании, расположенные по бокам от отрезка равного верхнему основанию, будут равны между собой и их сумма будет составлять 7-х т.е. мы от нижнего основания вычитаем верхнее. Обозначим каждый такой отрезок как (7-х)÷2. Так как мы выяснили, что в прямоугольном треугольнике высота и этот отрезок равны, тогда каждый тоже будет (7-х)÷2. Составляем уравнение:
(7-х)÷2× (7+х)÷2=10
(49-х^)÷4=10
49-х^=40
-х^=40-49
-х^= -9
х^=9
х=3
(7-х)÷2 - это высота; (7+х)÷2- это полусумма двух оснований; 10- это площадь трапеции. Площадь трапеции равна полусумме оснований умноженная на высоту, и на основе этой формулы мы составили уравнение.
Верхнее основание 3.
Мы можем также найти высоту, зная х:
Так как высота равна (7-х)÷2, то
(7-3)÷2=4÷2=2. Высота трапеции 2
Галочки вверху над х^ - читайте как Х в КВАДРАТЕ
Поделитесь своими знаниями, ответьте на вопрос:
Визначити кути паралелограма, знаючи що один з них = 78°15'
78°15', 101°45', 78°15', 101°45'.
Объяснение:
Для определённости будем считать, что речь идёт о параллелограмме АВСD, и величина его угол А равна 78°15'.
1) Противолежащие углы параллелограмма равны, тогда ∠А = ∠С = 78°15'.
2) ∠А и ∠В - внутренние односторонние при параллельных прямых АD и BC и секущей АВ, тогда по по свойству
∠А + ∠В = 180°.
∠В = 180° - ∠А = 180° - 78°15' = 179° 60' - 78°15' = 101°45'.
3) ∠В = ∠D = 101°45' (противолежащие углы равны).