для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см
Поделитесь своими знаниями, ответьте на вопрос:
Строна правильного четырехугольника вписанного в окружность на 2 см меньше стороны правильного треугольника вписанного в ту же окружность найдите периметр квадрата описанного около данной окружности
а₃ = R√3.
Сторона правильного четырёхугольника, вписанного в окружность, равна:
а₄ = R√2.
По условию задачи R√3 - R√2 = 2.
Отсюда радиус окружности равен:
R = 2 / (√3 - √2) = 6.292529.
Окружность, описанная около первого квадрата, является вписанной в заданный (второй) квадрат.
Сторона этого квадрата равна : а = 2R = 2* 6.292529 = 12.58506.
Тогда периметр заданного квадрата равен:
Р = 4а = 4* 12.58506 = 50.34023.