1. 65°, 65°, 50°.
2. 57,5°; 57,5°; 65°.
Объяснение:
Нам дан один из внешних углов равнобедренного треугольника. У равнобедренного треугольника углы при основании равны.
Значит возможны два варианта решения:
1. Если дан внешний угол при основании, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Тогда угол при вершине треугольника равен 180° - 2·65° = 50° (по сумме внутренних углов треугольника, равной 180°).
ответ: 65°, 65°, 50°.
2. Если дан внешний угол при вершине, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Внешний угол треугольника равен сумме двух внутренних (в нашем случае равных), не смежных с ним углов. Следовательно, углы при основании такого треугольника равны 115°:2 = 57,5°.
ответ: 57,5°; 57,5°; 65°.
1
теорема косинусов
а)
вс^2=ab^2+ac^2 - 2*ab*ac*cosa=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
bc=√97 см
б)
ac^2=ab^2+bc^2 - 2*ab*bc*cosb=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
ас=√127 см
2
теорема косинусов
а)
cos120= - cos60
np^2=mn^2+mp^2 -2 mn*mp*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
np=√379 см
б)
np^2=
3
cos120= - cos60
а) меньшую диагональ (вd)
лежит напротив острого угла < 60
bd^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
bd=√52=2√13 см
б) большую диагональ (ас)
лежит напротив тупого угла < 120
ac^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
ac=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos< a
196=64+100 - 160*cos< a
32= - 160*cos< a
cos< a= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos< b
400=144+196-336* cos< b
60 =-336* cos< b
cos< b = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника < a=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sina=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол < с=180-< a-< b=180-30-40=110
по теореме синусов
ac/sin< b=bc/sin< a=ab/sin< c=2r
ac/sin40=bc/sin30=16/sin110
ac=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
bc= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
ab/sin< c=2r
r= ab/(2*sin< c)=16 / (2*sin110)=8/ sin110 = 8.5 см
7
8
углы параллелограмма а и в - односторонние
< a - напротив диагонали d1
< b=180-< a - напротив диагонали d2
cosa= - cosb=
d1^2=a^2+b^2-2ab*cosa
d2^2= a^2+b^2-2ab*cosb = a^2+b^2-2ab*(-cosa)= a^2+b^2+2ab*cosa
d1^2+d2^2 = a^2+b^2-2ab*cosa + a^2+b^2 +2ab*cosa = a^2+b^2 + a^2+b^2 = 2 *( a^2+b^2 )
доказано сумма квадратов диагоналей равна сумме квадратов (четырех)сторон
9
10
11
12
13
Поделитесь своими знаниями, ответьте на вопрос:
Как решить уравнение (2х-1)(2х+1)+х (х-1)=2х (х+1) по формуле корней квадратного уравнения
5х в квадрате -1 = 2х в квадрате +2х
5х в квадрате - 2х в квадрате + 2 х=1
3х в квадрате - 2х =1
9х-2х=1
7х=1
х=1/7