1) 60/13
2) АD=13
3) 60√3
4) 120/13
Объяснение:
ABCD-ромб⇒АС⊥ВD, АО=0,5АС, DО=0,5ВD
АО=0,5АС=0,5·10=5
DО=0,5ВD=0,5·24=12
АС⊥ВD, по теореме Пифагора АD²=АО²+DО²=5²+12²=25+144=169⇒АD=13
2) АВ=ВС=СD=АD=13-сторона ромба
3) Площадь орт.проекции фигуры на плоскость равна произведению площади данной фигуры на косинус угла между плоскостью и данной фигурой.
Площадь ромба по готовой формуле: S=0,5AC·BD=0,5·10·24=120
Площадь орт проекции: s=S·cos((ABCD)∧α)=120·cos30°=120·√3/2=60√3
4) Через точку О - пересечение диагоналей ромба проведём перпендикуляр к стороне ВС, OM⊥BC.
Но так как ВС║AD⇒ME⊥AD, ME⊥BC⇒ME-высота ромба.
Ещё одна формула для нахождения площади ромба
S=ME·AD⇒120=ME·AD=13ME⇒ME=120/13
1) Опустим из точки М перпедикуляр МТ на плоскость α.
МТ⊥α, Е∈α⇒отрезок TE есть орт.проекция отрезка МЕ на плоскости α.
АD⊥МЕ⇒АD⊥ТЕ(теорема о трёх перпендикулярах)
Значить, ∠МЕT=(АВСD∧α)=30°
МТ⊥α, ЕТ∈α⇒МТ⊥ ЕТ⇒∠МТЕ=90°
∠МТЕ=90°,∠МЕT=30°⇒MT=0,5ME=0,5 ·120/13=60/13
Растояние между ВD и пл.α и есть отрезок МТ=60/13
Р.S. Все 4 пункта вычислены. Соответствие это выбор подходящего варианта ответа
1-В
2-А
3-Б
4-Д
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).
Поделитесь своими знаниями, ответьте на вопрос:
Am и bk-медианы треугольника abc. определите вид четырехугольника abmk и найдите его периметр, если ab=14, bc=12, ac=18