Длина основания - 6см, длины боковых сторон - 14см. Доказательство от противного - строим произвольный равнобедренный треугольник ABC с равными сторонами AB и AC. Из вершины А строим высоту AH, которая будет являться так же медианой и биссектрисой. Отсюда получаем, что треугольник ABH=ACH; BH=CH=1/2BC. Предположим, что длина основания BC=14см, то BH=CH=7см, а AB=AC=6см. Найдём синус угла BAH sin(BAH)=BH/AB=7/6>1 Синус угла не может быть больше 1, значит такой треугольник невозможен. Значит основание BC=6см, а стороны AB=AC=14см. Для проверки можем найти синус того же угла при новых условиях, он будет равен sin(BAH)=3/14, это допустимое значение. Значит основание треугольника - 6см, а боковые стороны - 14см.
Алексеевич949
22.04.2020
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Значит один из катетов равен 7. А второй по Пифагору равен √(196-49) = √147см