Дан четырехугольник mnpk. известно, что mn||pk, np||mk. докажите, что биссектрисы углов n и k параллельны или только напиши в ыоре , ок? типа: дано, решение, пусть , тогда ит.д.
Так как в четырехугольнике противолежащие стороны параллельны, то это параллелограмм (по определению).
В параллелограмме противолежащие углы равны
∠N = ∠K, значит равны и их половины:
∠MNA = ∠BNA = ∠РКВ = ∠∠АКВ.
∠РВК = ∠АКВ как накрест лежащие при пересечении параллельных прямых NP и МК секущей КВ, значит
∠РВК = ∠BNA, а эти углы - соответственные при пересечении прямых КВ и NA секущей PN, значит KB║NA.
КВ и NA могут совпадать, если диагональ параллелограмма является биссектрисой углов N и К, т.е. если MNPK ромб.
D-posilochka
08.04.2020
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
Раисовна878
08.04.2020
Вписанный угол, который опирается на диаметр, равен 90 градусов. Углы К и F следовательно равны 90 градусов. Треугольники MKN и MFN - прямоугольные. Они равны по общей гипотенузе и катету KN = FN. А в равных треугольниках против равных сторон лежат равные углы. Против стороны FN лежит угол FMN, а против стороны KN лежит угол KMN. Стороны равны, значит равны и углы. Но, если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то и третьи углы у них равны. Значит, угол MNF равен углу MNK.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан четырехугольник mnpk. известно, что mn||pk, np||mk. докажите, что биссектрисы углов n и k параллельны или только напиши в ыоре , ок? типа: дано, решение, пусть , тогда ит.д.
Дано: MNPK - четырехугольник,
MN║PK, NP║MK,
NA - биссектриса ∠N,
KB - биссектриса ∠К.
Доказать: NA║КB или NA и КВ совпадают.
Доказательство:
Так как в четырехугольнике противолежащие стороны параллельны, то это параллелограмм (по определению).
В параллелограмме противолежащие углы равны
∠N = ∠K, значит равны и их половины:
∠MNA = ∠BNA = ∠РКВ = ∠∠АКВ.
∠РВК = ∠АКВ как накрест лежащие при пересечении параллельных прямых NP и МК секущей КВ, значит
∠РВК = ∠BNA, а эти углы - соответственные при пересечении прямых КВ и NA секущей PN, значит KB║NA.
КВ и NA могут совпадать, если диагональ параллелограмма является биссектрисой углов N и К, т.е. если MNPK ромб.