Построим треугольник АВС, площадь которого равна 40 кв. см, Проведем медиану АМ. и обозначим точу Р такую, что АР:РМ=2:3.
Так как медиана треугольника делит его на две равновеликие части, то Sавм=40/2=20 кв. см.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).
Для наглядности построим высоту ВК – она будет являться высотой как для треугольника ВАМ так и для треугольника ВРМ
Основания Данных треугольников будут соотноситься как 3:5, значит
Sврм : Sвам=3 : 5
Sврм= Sвам*3 / 5=20*3/5=12 кв.см.
1).
Перпендикулярные плоскости образуют двугранный угол, линейный угол которого образован лучами с общим началом на ребре двугранного угла, проведенными в его гранях перпендикулярно ребру.
Здесь грани - плоскости треугольников АВС и АВС1, ребро двугранного угла – АВ.
НС⊥АВ; НС1⊥АВ, угол СНС1=90° по условию.
∆ АВС и ∆ АВС1 равнобедренные прямоугольные, углы при их общем основании АВ равны 45°, ⇒ они равны по 2-признаку равенства треугольников.
∆ СНС1- прямоугольный. Его катеты равны высотам=медианам равных треугольников. Следовательно, он равнобедренный.
Медиана прямоугольного треугольника равна половине гипотенузы. ⇒
НС=НС1=3
СС1=3•sin45°=3√2 см
2)
Расстояние от точки М до плоскости - длина отрезка МН, проведенного между ними перпендикулярно. МН=18
Расстояние от точки М до ребра двугранного угла - длина отрезка МК, проведенного между ними перпендикулярно.
∆ МКН - прямоугольный. Его гипотенуза МК=МН:sin60°
MK=18:(√3/2)=12√3
Поделитесь своими знаниями, ответьте на вопрос:
Установите взаимное расположение окружностей, если: 1) r=5см, r=3см, oo1=7см 2)r=3см, r=2см, oo1=7см 3)r=10см, r=8см, oo1=5см
2) ОО1>R+r, 7>3+2, 7>5 значит нет общих точек
3) тоже нет общих точек