Это задание невыполнимо, так
как такого треугольника не су
ществует.
Объяснение:
Если боковая сторона 9см, то
основание равнобедренного
треугольника:
Р-2×9=38-18=20(см)
Длины сторон треугольника:
Основание - 20 см
1 боковая сторона - 9 см
2 боковая сторона - 9 см.
Треугольник скществует, если
сумма длин любых двух сто
рон треугольника больше
длины третьей стороны.
Проверим это условие:
1) 9+9=18 (см) сумма двух
боковых сторон;
18см<20см условие не выпол
няется.
Сумма длин двух боковых
сторон меньше длины осно
вания.
Отет:
Такой треугольник не сущест
вует.
3. АВ = AD по условию,
∠ВАС = ∠DAC по условию,
АС - общая сторона для треугольников ВАС и DAC, ⇒
ΔВАС = ΔDAC по двум сторонам и углу между ними.
6.
а) ∠МАВ = ∠NBA по условию,
∠МВА = ∠NAB по условию,
АВ - общая сторона для треугольников МАВ и NBA, ⇒
ΔМАВ = ΔNBA по стороне и двум прилежащим к ней углам.
б) АМ = BN из равенства ΔМАВ = ΔNBA (см. п. а))
∠АМН = ∠ВNН из равенства ΔМАВ = ΔNBA,
∠МАН = ∠МАВ - ∠НАВ
∠NBH = ∠NBA - ∠HBA, а так как ∠МАВ = ∠NBA по условию и ∠НВА = ∠НAB по условию, то и
∠MAH = ∠NBH, ⇒
ΔMAH = ΔNBH по стороне и двум прилежащим к ней углам.
9. ∠САВ = ∠EFD по условию,
∠АВС = ∠EDF по условию,
АВ = AD + DB
FD = FB + DB, а так как AD = BF по условию, то и
АВ = FD, ⇒
ΔСАВ = ΔEFD по стороне и двум прилежащим к ней углам.
12. DE = CE по условию,
∠ADE = ∠BCE как смежные с равными углами,
∠AED = ∠BEC как вертикальные, ⇒
ΔAED = ΔBEC по стороне и двум прилежащим к ней углам.
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике авc проведена высота cd, равная 5м.найдите стороны треугольника, если угола=45, уголв=30
По теореме Пифагора найдем DВ:
DВ²=100-25
DB²=√75
DB=5√3
(Проверить можно по теореме тангенсов: tg30=
Рассмотрим ΔADC: ∠D=90(по опр. высоты), ∠А=45⇒∠С=45°⇒ΔADC - равнобедр.(по призн.)⇒CD=DA=5
По теореме Пифагора найдем СА:
АС²=25+25
АС=5√2
(Проверим по теореме синусов: sin45=
ответ: АС=5√2, АВ=5+5√3, ВС=10