Найдите больший из углов образованных при пересечении биссектрисы острова угла прямоугольного треугольника и противоположного катета, если угол треугольника равен 26*
Так как это биссектрисса, то она делит угол пополам. рассмотрим получившийся прямоугольный треугольник с одним углом 13°. 180- 103=77- один угол с катетом, второй угол =180-77=103 => больший угол 103
annodomini1
26.10.2020
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
varvara-kulkova
26.10.2020
1. в треугольниках AQK и PQM AQ=PQ, MQ=KQ, ∠AQK=∠PQM как вертикальные углы. По первому признаку равенства треугольников треугольники AQK и PQM равны, значит ∠AKQ=∠PMQ. ∠AKP=∠AKM+∠PKM=33+47=80
2. BO=CO => BOC равнобедренный, ∠OCB=∠OBC. Из условия известно, что ∠ABE=∠EBC, ∠BFC=90, => ∠ABC=2∠BCO, ∠ABC+∠BCO=90, ∠ABC=60, ∠BCO=30 OD - медиана, проведенная к основанию равнобедренного треугольника BOC => ∠ODC=90, => ∠COD=60, =>∠FCA=60 => ∠FAO=30 ∠ABO=∠BAO=30 => треугольник AOB равнобедренный => CA=OB=OC => треугольник AOC равнобедренный , ∠AOE=∠BOD=60, ∠COE=∠BOF=60 => OE - биссектриса => OE - высота => ∠OAC=∠OCA=30 ∠ABC=∠BCA=∠BAC => ABC равносторонний
рассмотрим получившийся прямоугольный треугольник с одним углом 13°. 180- 103=77- один угол с катетом, второй угол =180-77=103 => больший угол 103