прямые называются перпендикулярными если они пересекатся и получаются угол в 90 градусов
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
прямые называются перпендикулярными если они пересекатся и получаются угол в 90 градусов
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
Поделитесь своими знаниями, ответьте на вопрос:
Один из острых углов прямоугольного треугольника равен 38 градусам. найдите острый угол между гипотенузой и бессектрисой прямого угла. ответ дайте в градусах.
Угол В = 38°
Угол А = 52°, т.к. 180 - (38+90)=52
Угол АСН = 45 т.к.
СН - биссектриса, поэтому угол между гипотенузой и биссектрисой =
180 - (45+52) = 83.
Легко же, ну -.-