ВС=СD.
∆ ВСD - равнобедренный угол СВD=углу СDВ.
В то же время ∠СВО=∠НDО как накрестлежащие при пересечении параллельных прямых секущей, углы при О - равны как вертикальные. прямоугольные треугольники ВСО и НDО подобны.
HD:ВС=ОH:СО=12\20=3/5
Примем ВС=СD=а.
Тогда НD=3а\5
Из ∆ СНD по т.Пифагора
СD²=СН²+НD²
а²=1024+9а²\25
16а²\25=1024
Разделим обе стороны уравнения на 16, извлечем корни:
а\5=8
а=40 см
АD=а+3а\5=1,6а
АD=40х1,6=64 см
S=(BC+AD)хCH:2=104х(20+12):2=1664 см²
х-это умножение)
Поделитесь своими знаниями, ответьте на вопрос:
Решить на завтра. 1) угол между прямой а и плоскостью а равен 45 градусов. через точку их пересечения в плоскости а проведена прямая b. угол между прямыми а и b равен 60 градусов. докажите что угол между прямой b и проекцией прямой а на плоскость а равен 45 градусов. 2)плоскости равносторонних треугольников abc и abd перпендикулярны. найдите угол: 1. между прямой dc и плоскостью abc 2. между плоскостями adc и bdc
Обозначим начало наклонной А, конец наклонной В ( точка пересечения с плоскостью α).
Опустим из А перпендикуляр на плоскость α.
ВС- проекция наклонной а.
АС⊥ВС.
Угол АВС=45°
Прямую b обозначим ВК; угол АВК=60°
Рассмотрим треугольник АВС.
Так как угол АВС=45°, то угол ВАС=45°,
треугольник АВС прямоугольный равнобедренный.
АС=ВС=а*sin(45°)=(a√2):2.
Треугольник АВК прямоугольный.
ВК=а*cos(60°)=а:2
Треугольник ВКС - прямоугольный с гипотенузой ВС
cos ∠ KBC=BК:ВС=(а:2):(a√2):2=1:√2. Умножив числитель и знаменатель на √2, получим
cos ∠ KBC=√2):2. Это косинус 45°