20
Объяснение:
Строим из Е прямую, параллельную основанию. Получаем точку F. К ней проводим из С отрезок. Угол FCB при этом 60, т.к. ВС и FE параллельны. Точка пересечения FC и ВЕ - О. Опускаем из А биссектрису в т.О. Треугольник FEO равносторонний, углы по 60.
Угол DCF=10, FDC=30 (180-70-60). Угол ВАО=10, угол АОF=30 (60/2). FC=АF (т.к. углы А и АСF по 20 градусов). Значит, треугольники АОF и СDF равны. значит DF=OF. Но FEO - равносторонний, значит DF=FE. Т.е. треугольник DFE равнобедренный. Угол DFE=80, следовательно углы FDE и FED равны 50 градусов ((180-80)/2). Значит, искомый угол EDC=EDF-CDF=50-30=20.
Поделитесь своими знаниями, ответьте на вопрос:
Решите две с чертежом 1) сторона основания правильной четырехугольной пирамиды равна 16, боковые ребра 17. найдите объем пирамиды 2) основанием прямой призмы является прямоугольный треугольник с катетами 1 и 5 .боковые ребра равны 8\п . найдите объем цилиндра, описанного около этой призмы.
АС=BD=√(16²+16²)=16·√2
Высота пирамиды H=SO, O- центр квадрата, точка пересечения диагоналей и одновременно центр описанной окружности, центр вписанной окружности.
По теореме Пифагора
H²=SO²=SA²-AO²=17²-(16√2/2)²=289-128=161
H=√161
V=(1/3)S(осн)·Н=(1/3)·16²·√161=256√161/3 куб. ед.
2) Центр окружности, описанной около прямоугольного треугольника - середина гипотенузы.
R=c/2
c²=1²+5²=26
R=(√26)/2
V(цилиндра)=S(осн.)·H=πR²·H=π·((√26)/2)²·(8/π)=52 куб. ед.