Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке в равнобедренном треугольнике abc с основанием ac угол b равен 120 градусам , а высота , проведенная из вершины b, равна 13 см. найдите боковую сторону треугольника abc . решение. 1) в равнобедренном треугольнике abc углы при основании поэтому 2)так как в прямоугольном треугольнике авd угол а равен то катет гипотенузы ав, откуда ав=2*__=__см. ответ' ав=
ответ: 26 см.