shef3009
?>

Стороны треугольника равны 5, 7 и 10. чему равен косинус наименьшего угла? ответ округлите до сотых

Геометрия

Ответы

nordwokintos4
Наименьший угол треугольника будет напротив наименьшей стороны, то есть между сторонами в в 10 и 7 см. Этот угол можно найти по теореме косинусов:
AB^2=BC^2 + AC^2 - 2*BC*AC*cosα
5^2 =7^2+10^2-2*7*10*cosα
25=49+100-140cosα
cosα=124/140=0.8857=0.89
Matveevanastya0170

.

Пусть длина образующей равна L.

Поскольку угол между ними 60 градусов, то сечение - равносторонний треугольник.  

Следовательно, длинна хорды в основании конуса, соответствующей центральному уголу 90 градусов, тоже равна L.

Если опустить из центра основания конуса перпендикуляр на эту хорду (на нижнюю сторону сечения), то легко видеть, что он будет равен L/2. (Там получается прямоугольный треугольник с углом в 45 градусов, образованный этим перпендикуляром, половиной хорды и радиусом). Кроме того, если соединить точку пересечения хорды с этим перпендикуляром с вершиной КОНУСА, то получится как раз двугранный угол между сечением и основанием конуса. Это следует из того, что хорда (то есть линия пересечения этих плоскостей) перпендикулярна 2 прямым в этой плоскости - перпендикуляру из центра основания и ОСИ КОНУСА. Этот двугранный угол легко вычислить - мы имеем прямоугольный треугольник, в котором нижний (прилежащий) катет равен L/2,

второй катет - это просто ось конуса, а гипотенуза - одновременно высота в равностороннем треугольнике со строной L (то есть в сечении). Ясно, что длина гипотенузы равна L*sqrt(3)/2.  

Поэтому косинус двугранного угла равен 1/sqrt(3). По моему, это уже ответ, но при желании его можно преобразовать, вычислив в градусах. Приближенно он равен 0,955 радиана, или 54,7356 градуса.

Лишним условием является площадь. Это, кстати, сразу ясно - ответ не может зависеть от МАСШТАБА.

Объяснение:


Через две образующие конуса, угол между которыми равен 60°, проведена плоскость, образующая с площин
tsarkovim

В ромбе диагонали точкой пересечения делятся пополам (АО=ОС и ВО=OD).

Пусть ВО=х, тогда:

AC-BD=14

AC-2x=14

AC=14+2x

2·OC=2(x+7)

OC=x+7

Из ΔBCO по т. Пифагора:

\displaystyle BC^2=BO^2+OC^2\\17^2=x^2+(x+7)^2\\x^2+x^2+14x+49=289\\2x^2+14x-240=0\\x^2+7x-120=0\\D=b^2-4ac=7^2-4\cdot 1 \cdot (-120)=49+480=529\\x_1=\frac{-b+\sqrt{D} }{2a} =\frac{-7+23}{2} =8\\x_2=\frac{-b-\sqrt{D} }{2a} =\frac{-7-23}{2}=-15

x=-15 не подходит по смыслу задачи, поэтому один корень х=8.

ВО=х=8 см

ОС=х+7=8+7=15 см

АС=АО+ОС=15+15=30 см

BD=BO+OD=8+8=16 см

\displaystyle S_{ABCD}=\frac{AC\cdot BD}{2} =\frac{30\cdot 16}{2} =240\; cm^2

Вспомним такую формулу: d_1^2+d_2^2=2a^2+2b^2, где d₁, d₂ - диагонали параллелограмма(у нас ромб, а ромб-это тоже параллелограмм), a, b - стороны параллелограмма(у нас ромб, поэтому a=b).

Найдем диагонали, составив систему:

Пусть АС=х, BD=y.

\displaystyle \left \{ {{AC-BD=14} \atop {AC^2+BD^2=2AB^2+2BC^2}} \right. \\\left \{ {{x-y=14} \atop {x^2+y^2=2\cdot 17^2+2\cdot 17^2}} \right. \\\left \{ {{x-y=14} \atop {x^2+y^2=1156}} \right. \\\left \{ {{x=14+y} \atop {(14+y)^2+y^2=1156}} \right. \\\left \{ {{x=14+y} \atop {196+28y+y^2+y^2=1156}} \right. \\\left \{ {{x=14+y} \atop {y^2+14y-480=0}} \right. \\{\left [ \left \{ {{y=16} \atop {x=30}} \right. \atop\left \{ {{y=-30} \atop {x=-16}} \right. \right.

Отрицательные значения нам не подходят, так как длинна - величина неотрицательная.

Тогда AC=x=30см, BD=y=16см.

\displaystyle S_{ABCD}=\frac{AC\cdot BD}{2} =\frac{30\cdot 16}{2} =240\;cm^2

ответ: S_{ABCD}=240\;cm^2


Різниця діагоналей ромба 14 см., а його сторона 17 см. Знайти площу ромба

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны треугольника равны 5, 7 и 10. чему равен косинус наименьшего угла? ответ округлите до сотых
Ваше имя (никнейм)*
Email*
Комментарий*