Руслан1360
?>

Построить график фунции, найдя точки пересечения его с осями координат: y=2x+6. 40

Геометрия

Ответы

Александрович175

Объяснение:

Возможно (и скорее всего), не самый короткий путь, но всё же.

Рассмотрим тр-ки △ANC и △CMA. У них АС - общая, <NAC=<MCA как углы при основании равнобедренного △ABC, а <ACN=<CAM как половинки этих равных углов (поскольку AM и CN - биссетрисы). => △ANC=△CMA по 2му признаку.

Из равенства △ANC=△CMA следует, что AN=CM. Очевидно также что и BN=BM

По обратной теореме Фалеса Если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны.

Значит АС || MN => <AMN=<MAC как внутренние накрест лежащие (секущая AM). А <BMN=<MCA как соответственные (секущая ВС). При этом <AMN=<MAC=1/2<NAC=1/2<MCA => <BMN=2<AMN. Что и требовалось доказать.

ilyagenius

Используя теоремы синусов и косинусов мы нашли:

с = 13,7 ед., ∠В = 58°, ∠С = 77°.

Объяснение:

Требуется найти сторону с, угол В, угол С используя теоремы косинусов и синусов.

Дано: ΔАВС.

a = 10; b = 12;

∠C = 45°.

Найти: с, ∠А; ∠В.

1. Для того, чтобы найти ∠В, воспользуемся теоремой синусов:

Стороны треугольника пропорциональны синусам противолежащих углов:\displaystyle \boxed {\frac{a}{sin\angle{A}}=\frac{b}{sin\angle{B}}=\frac{c}{sin\angle{C} } } }

Подставим значения в формулу значения: a = 10; b = 12;

\displaystyle sin\;45^0=\frac{\sqrt{2} }{2}.

\displaystyle \frac{a}{sin\angle{A}}=\frac{b}{sin\angle{B}} \\&#10;\\\&#10;\frac{10}{\frac{\sqrt{2} }{2} } =\frac{12}{sin\angle{B}} \\&#10;\\&#10;sin\angle{B}=\frac{\sqrt{2}*12 }{2*10}\approx 0,85

⇒  по таблице найдем ∠В ≈ 58°

2. Найдем ∠С.

Нам уже известны ∠А = 45° и ∠В = 58°.

Сумма углов треугольника равна 180°.

∠С = 180° - (∠А +∠В) = 180° - (45° +58°) = 77°.

Итак ∠С  =77°

3. Осталось найти сторону с.

Найдем сторону с по теореме синусов.

∠С  =77° ⇒ sin 77° = 0,97

Подставим значения b = 12; sin∠C = 0,97; sin∠B = 0,85:

\displaystyle \frac{b}{sin\angle{B}}=\frac{c}{sin\angle{C}}\\&#10; \\&#10; \frac{12}{0,85} = \frac{c}{0,97} \\&#10;\\&#10;c=\frac{12*0,97}{0,85} \approx 13,7

Сторона с = 13,7 (ед.)

* Сторону с можно также найти по теореме косинусов:

Квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.\boxed {c^2=a^2+b^2-2ab\;cos\angle{C}}

∠С = 77°  ⇒ cos ∠C = 0,22

Подставим в формулу значения: а = 10; b = 12; cos ∠C = 0,22:

\displaystyle c^2=10^2+12^2-2*10*12*0,22=\\&#10;\\&#10;=244-52,8=191,2\\&#10;\\&#10;c=\sqrt{191,2}\approx 13,7

Сторона с = 13,7 (ед).


а=10, в=12, угол А=45°. Найти сторону с, угол В, угол С используя теорему катетов и синусов. (распиш

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Построить график фунции, найдя точки пересечения его с осями координат: y=2x+6. 40
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fullhouse9991
natalyaSvetlana
vikola2008
zsa100
puma802
abdulhakovalily22
mayorovmisc6
Олег1105
Avdeeva Inga1505
Anastasiya1537
samira57
valya-7777
igor-790
Егорова
Rubber-soul