Дано: ΔАВС - прямокутний, ∠А=90°, АС=30 см, ВС=34 см; МК⊥ВС, ВМ=МС. Знайти МК.
Знайдемо АВ за теоремою Піфагора:
АВ=√(ВС²-АС²)=√(1156-900)=√256=16 см.
Проведемо ВК і розглянемо ΔВКС - рівнобедрений, тому що ВМ=СМ і МК⊥ВС, отже ВК=КС.
Нехай АК=х см, тоді КС=ВК=30-х см.
Знайдемо АК з ΔАВК - прямокутного:
АВ²=ВК²-АК²; 16² = (30-х)² - х²; 256=900-60х+х²-х²;
60х=900-256=644; х=10 11/15 см. АК=10 11/15 см, тоді
ВК = 30 - 10 11/15 = 19 4/15 = 289/15 см.
Знайдемо МК за теоремою Піфагора з ΔВМК, де ВМ=34:2=17 см.
МК²=ВК²-ВМ²=(289/15)² - 17² = (83521/225) - 289 = 18496/225.
МК=√(18496/225)=136/15=9 1\15 см.
Відповідь: 9 1/15 см.
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольной трапеции основания равны 25 см и 32 см, а большая диагональ является биссектрисой острого угла. найдите площадь трапеции
угол АДВ=углу ДВС( накрест лежащие при параллельных ВС и АД и секущей ВД); углы АВД, ДВС и СДВ равны, т.к. ВД - биссектриса; отсюда тр-к ВСД равнобедренный; ВС=СД=25 см;
опустим высоту СН на АД; ВС=АН=25см; отсюда ДН=32-25=7 см;
в тр-ке СНД по т. Пифагора СД^2=CH^2+HD^2, CH^2=625-49=576,
СН=24 см - это высота трапеции;
S=(а+в)/2*h=(25+32)/2*24=684 см кв. - это ответ.