ответ: 1200π
Объяснение:
Формула объёма прямой призмы V=S•H, где Ѕ - площадь основания, Н - высота призмы.
Высота призмы равна высоте вписанного цилиндра, которая, в свою очередь, равна его оси. Ось цилиндра параллельна боковой грани призмы, диагональ боковой грани принадлежит её плоскости. Эти два отрезка не пересекаются и не параллельны - они скрещиваются. Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.
Окружность основания цилиндра касается боковой грани призмы, радиус перпендикулярен стороне основания, поэтому расстояние между осью цилиндра и диагональю боковой грани призмы равно радиусу цилиндра.
Ѕ(полн. цил)=2Ѕ (осн)+Ѕ(бок).
Ѕ(осн)=πr²=π•(5√2)²=50π ⇒2S=100π
Ѕ(бок)=106π-100π=6π
Ѕ(бок)=2πr•H ⇒ H=6π:2π•5√2=0,3√2
Высота ВК основания (ромба) равна диаметру основания цилиндра=2r=10√2
Сторона ромба АВ=ВС=ВК:sin45°=(10√2•√2):2=20
S(ABCD)=AB•AC•BK=200•10√2=2000√2
V=π•2000√2•0,3√2=1200π
Дано :
Четырёхугольник АВСD — прямоугольник.
Отрезки BD и AC — диагонали.
Точка О — точка пересечения диагоналей.
∠DOC = 20°.
Найти :
∠BDC = ?
∠DBC = ?
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Отсюда AO = OC = OD = OB.
Рассмотрим ∆ODC — равнобедренный (по определению).
Следовательно ∠ODC = ∠DCO (по свойству равнобедренного треугольника).
По теореме о сумме углов треугольника —
∠DOC + ∠ODC + ∠DCO = 180°
∠ODC + ∠DCO = 180° - ∠DOC = 180° - 20° = 160°
∠ODC = ∠DCO = 160°/2 = 80°.
Рассмотрим ∆BDC — прямоугольный.
По теореме о сумме острых углов прямоугольного треугольника —
∠BDC + ∠DBC = 90°
∠DBC = 90° - ∠BDC = 90° - 80° = 10°.
80°, 10°.
Поделитесь своими знаниями, ответьте на вопрос:
Если 2 параллельные прямые пересечены секущей, то: 1.накрест лежащие углы = 2.смежные углы = 3.соответственные углы в сумме 180° 4.ожносторонние углы =