Построим равнобедренный треугольник АВС с основанием АВ. Проведем высоты АД и ВЕ. Рассмотрим треугольники ACД и BCЕ. AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты). Сумма углов треугольника равна 180 градусам. В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов. В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов. Значит: углы CAД=CBЕ. Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам). Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.
Лилит_Шутова
25.04.2023
Касательные АС и ВД образуют угол, биссектриса которого проходит через центры окружностей О1О2. Половина этого угла α равна углу между радиусами R1и R2 , проведенными в точку касания и прямыми АВ и СД. Проведём отрезок из точки касания меньшей окружности параллельно О1О2 до прямой СД. sinα = (R2-R1)/(R2+R1)= (99-22)/(99+22) = 7/11 ≈ 0,636364. Расстояние от середины АВ до R1 равно 22*(7/11) = 14. Расстояние от середины СД до R2 равно 99*(7/11) = 63.
ответ: расстояние между прямыми АВ и CD равно (22+99)+14-63 = 72.
cristiansirbu9974
25.04.2023
Средняя линия треугольника соединяет середины двух его сторон, параллельна третьей и равна её половине. Обозначим треугольник АВС. АВ=ВС. Если средняя линия соединяет середины АВ и ВС, то основание АС треугольника равно 2•5=10. Тогда сумма равных боковых сторон равна 40-10=30, и каждая из них 30:2=15 см.
Средняя линия может соединять и середины одной боковой стороны и основания. Рассмотрим такой случай для данного условия. Пусть средняя линия равна половине боковой стороны АВ. Тогда каждая боковая равна 2•5=10, их сумма 20 см, и на основание останется 40-20=20 см. Из неравенства треугольника: любая сторона меньше суммы двух других. Следовательно, для данного треугольника основание равно 10 см, боковые стороны по 15 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Доказать, что в равнобедренном треугольнике 2 высоты равны
Рассмотрим треугольники ACД и BCЕ.
AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты).
Сумма углов треугольника равна 180 градусам.
В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов.
В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов.
Значит: углы CAД=CBЕ.
Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам).
Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.