Допустим, имеем параллелограмм ABCD, в котором AC и BD - диагонали. Доказательство: 1. Необходимо опустить перпендикуляры BK и CF на прямую, которая содержит сторону AD. 2. Рассмотрим ΔBDK: По теореме Пифагора: BD²=KD²+BK² 3. Рассмотрим ΔACF: По теореме Пифагора: AC²=AF²+CF² 4. Складываем два выражения в столбик: BD²=KD²+BK² + AC²=AF²+CF² = AC²+BD²=KD²+BK²+AF²+CF² По свойству высот в параллелограмме, BK=CF ⇒ AC²+BD²=2BK²+KD²+AF² 5. Рассмотрим ΔABK: По теореме Пифагора: BK²=AB²-AK² 6. Так как KD=AD-AK, AF=AD+FD ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+FD)² 7. BK=CF, AB=CD ⇒ ΔABK=ΔDCF - по свойству катета и гипотенузы ⇒ AK=DF ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+AK)² AC²+BD²=2AB²-2AK²+AD²-2AD*AK+AK²+AD²+2AD*AK+AK² AC²+BD²=2AB²+2AD² AC²+BD²=2(AB²+AD²) Что и требовалось доказать.
zharovaleks
23.07.2021
Вспомним, что четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин противоположных сторон равны между собой. Значит, сумма боковых сторон равна 4+9=13 Пусть дана трапеция АВСД, ВС||АД, углы А и В - прямые. Опустим из С высоту СН на основание АД. Тогда АВСН - прямоугольник, АН=ВС=3, АВ=СН=х, СД=13-х. По т.Пифагора найдем х: (13-х)²=х²+5² 169-26х=х²=х²+25 26х=144 х=144/26 Площадь трапеции равна половине произведения высоты на полусумму оснований: S=CH*(ВС+АД):2 S=(144/26)*13/2=36 (ед. площади) ------- У прямоугольной трапеции есть свойство: площадь прямоугольной трапеции, описанной около окружности, равна произведению ее оснований, что и подтверждается данным решением.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Высота правильной усеченной пирамиды равна √32 см, а стороны основания 2см и 8см найти площадь диагонального сечения