Salko17
?>

Вправильной четырехугольной пирамиде sabcd основание abcd - квадрат со стороной 6, а боковое ребро равно 12. на ребре sa отмечена точка м так, что sm=6 а) постройте перпендикуляр из точки s на плоскость всм. б) найдите расстояние от вершины s до плоскости bcm

Геометрия

Ответы

Olga-Lev1160
Построение ясно из рисунка.
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S  пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды  SABCD.

Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата  равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных  треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно,  SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.

Вправильной четырехугольной пирамиде sabcd основание abcd - квадрат со стороной 6, а боковое ребро р
Kashtelyan Tamara847
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.

В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС

Из этого следует, что угол AED – линейный угол двугранного угла ABCD.

Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:

h = a√3 / 2

где а – сторона равностороннего треугольника, h – высота

AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3

Рассмотрим ∆ AED (угол DAE = 90°):

tg AED = AD / AE = 4 / 3√3 = 4√3 / 9

ОТВЕТ: 4√3 / 9
Дана треугольная пирамида dabc. известно, что ребро da перпендикулярно плоскости abc, треугольник ab
Plamia7917
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.

В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС

Из этого следует, что угол AED – линейный угол двугранного угла ABCD.

Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:

h = a√3 / 2

где а – сторона равностороннего треугольника, h – высота

AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3

Рассмотрим ∆ AED (угол DAE = 90°):

tg AED = AD / AE = 4 / 3√3 = 4√3 / 9

ОТВЕТ: 4√3 / 9
Дана треугольная пирамида dabc. известно, что ребро da перпендикулярно плоскости abc, треугольник ab

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вправильной четырехугольной пирамиде sabcd основание abcd - квадрат со стороной 6, а боковое ребро равно 12. на ребре sa отмечена точка м так, что sm=6 а) постройте перпендикуляр из точки s на плоскость всм. б) найдите расстояние от вершины s до плоскости bcm
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vladimirovna1370
vikashop269
Маргарита794
Pavlovna-Golovitinskaya378
yuda12
Sergei_sergei
Struev730
druzhbamagazin2457
Лебедев972
aleksvasin
drozd2008
Екатерина15
Grigorevna23
skvorec3424
allo22-27